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The separated flow past a zero-thickness flat plate held normal to a free stream at
Re¯ 250 has been investigated through numerical experiments. The long-time
signatures of the drag and lift coefficients clearly capture a low-frequency unsteadiness
with a period of approximately 10 times the primary shedding period. The amplitude
and frequency of drag and lift variations during the shedding process are strongly
modulated by the low frequency. A physical interpretation of the low-frequency
behaviour is that the flow gradually varies between two different regimes: a regime H
of high mean drag and a regime L of low mean drag. It is observed that in regime H
the shear layer rolls up closer to the plate to form coherent spanwise vortices, while in
regime L the shear layer extends farther downstream and the rolled-up Ka! rma! n
vortices are less coherent. In the high-drag regime three-dimensionality is characterized
by coherent Ka! rma! n vortices and reasonably well-organized streamwise vortices
connecting the Ka! rma! n vortices. With a non-dimensional spanwise wavelength of
about 1.2, the three-dimensionality in this regime is reminiscent of mode-B three-
dimensionality. It is observed that the high degree of spanwise coherence that exists in
regime H breaks down in regime L. Based on detailed numerical flow visualization we
conjecture that the formation of streamwise and spanwise vortices is not in perfect
synchronization and that the low-frequency unsteadiness is the result of this imbalance
(or phase mismatch).

1. Introduction

Wakes of bluff bodies have been extensively studied because of their relevance to
drag on vehicles, flow over ship hulls, and submarines. Such flows provide rich and
interesting flow dynamics of considerable engineering relevance. Several basic
geometrical configurations including circular and rectangular cylinders, flat plates, and
airfoils have been experimentally and numerically investigated to understand the
fundamental aspects of flow separation and wake instabilities. The normal flat plate is
the simplest bluff body configuration that can be used to understand wake instabilities.
Unlike the case of the circular cylinder, the flow past a flat place is characterized by
fixed separation points at the edge of the plate. As a result, the wake behind a normal
plate exhibits interesting complex dynamics even at modest Reynolds numbers.

There have been several previous experimental and numerical studies of flow past a
flat plate placed in a uniform stream. Almost all of the experimental studies have been
in the high-Reynolds-number regime from 1000 to 5¬10& (Fage & Johansen 1927;
Bradbury & Moss 1975; Perry & Steiner 1987; Steiner & Perry 1987; Kiya &
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Matsumura 1988; Chua et al. 1990; Leder 1991; Lisoski 1993). Compared to the
experimental studies, a relatively smaller number of numerical studies have been
carried out for the flow past a normal flat plate. Earliest attempts are by Kuwahara
(1973) and Kiya & Arie (1980) using the discrete-vortex method. Castro & Jones (1987)
performed two-dimensional steady-state numerical simulations for Re in the range of
100 to 800. Because of the steady-state assumption, the length of the mean wake
recirculation region was significantly over-predicted. These computations have since
then been improved (Lisoski 1993) and extended to three dimensions (Joshi, Vanka &
Tafti 1994; Najjar 1994; Najjar & Vanka 1995a ; Najjar & Balachandar 1996).

A significant observation that can be made from the above studies (Lisoski 1993;
Joshi et al. 1994; Najjar 1994; Najjar & Balachandar 1996) is that the temporal signal
of drag and lift coefficients is marked by a strong component of low-frequency
unsteadiness, over a wide range of Re from 250 to 2.5¬10&. The low frequency is about
one tenth of the primary shedding frequency. The instantaneous drag coefficient can be
observed to evolve back and forth between periods of high and low mean drag. This
results in a low-frequency component superposed on the drag coefficient, in addition
to its variation at twice the Ka! rma! n vortex shedding frequency. Owing to symmetry
about the wake centreline, no such low-frequency component is superposed on the lift
coefficient, which oscillates at the shedding frequency. On the other hand, the
amplitudes of variation in both the drag and lift coefficients over a shedding cycle are
significantly modulated by the low-frequency unsteadiness. In addition a low-
frequency modulation of the shedding frequency can be observed.

In the canonical case of a circular cylinder, the presence of low-frequency
unsteadiness is not so clear. Some of the earliest evidence of low-frequency unsteadiness
can be found in the seminal work on cylinder wake by Roshko (1954). In the range 150
!Re! 300, termed the transition range, irregular bursts appeared in the oscillograms
with an approximate period of about 10 times the shedding period. Based on dye
visualizations and velocity measurements at several points in the wake of a circular
cylinder Tritton (1959) and later Berger (1964) observed two different modes of
Ka! rma! n vortex shedding: a low-speed mode in the range 40!Re! 110 and a high-
speed mode in the range 80!Re! 160. The low-speed and high-speed modes differed
in their shedding frequency, and the transition between them was characterized by
periodic beating, which was on the order of 6 to 14 times the primary shedding period.
Subsequent experiments by Gaster (1969, 1971) raised the possibility that the
discontinuity in the shedding frequency and the low-frequency beating are due to flow
non-uniformities.

The effect of cylinder ends on the nature of Ka! rma! n vortex shedding was
investigated by Gerich & Eckelmann (1982). They observed a central region of regular
shedding frequency and affected regions, near the cylinder ends, characterized by a
lower frequency. Above a certain critical Re low-frequency beatings were observed
corresponding to the frequency difference between the central and the affected end
zones. Recent computations by Dauchy, Dusek & Fraunie (1997) confirm the influence
of the cylinder’s free ends in generating a low-frequency beating even at Reynolds
numbers as low as 54. Williamson (1992, 1996) observed that in the wake transition
regime (180!Re! 260), where mode-A instability gives way to mode-B instability,
two different shedding frequencies coexist. The higher shedding frequency is associated
with a more regular mode-B three dimensional state, whereas the lower shedding
frequency is associated with large-scale vortex dislocations. He also observed that the
two frequencies do not coexist, but the flow intermittently swaps between the states at
a low frequency.
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At Re in the range of 5¬10% to 7¬10', Schewe (1983) observed a strong low-
frequency component in the time trace of drag and lift coefficients for a circular
cylinder, qualitatively comparable to that observed for the normal plate by Lisoski
(1993) and Najjar (1994). More recently Szepessy & Bearman (1992) and Szepessy
(1994) have reported strong oscillations in the spanwise correlations of surface pressure
measured on a circular cylinder near the separation line, having periods around 10 to
20 times the Strouhal period. The pressure correlation between different spanwise
points also indicated that the low-frequency unsteadiness was associated with phase
shifts, which he conjectured were similar to the natural vortex dislocations addressed
by Williamson (1992).

On the computational front, Karniadakis & Triantafyllou (1992), Mittal &
Balachandar (1995a) and Henderson (1994) at modest Reynolds numbers observed
periods of almost periodic behaviour interspersed with periods of apparently random
behaviour. These observations can be interpreted as a manifestation of low-frequency
unsteadiness, but the time series were not long enough to be conclusive. Recent
simulations by Belov, Jameson & Martinelli (1997) at Re¯ 225 showed the presence
of a low-frequency component in the time trace of the lift coefficient and base pressure.
While imperfect cylinder ends, as shown in experiments, can certainly lead to low-
frequency beating even at very low Reynolds numbers, the observation of low-
frequency unsteadiness in the three-dimensional simulations, where cylinder ends are
avoided with an assumption of periodicity, suggests that low-frequency unsteadiness is
an intrinsic property of the wake. Nevertheless, the observed amplitude of low-
frequency unsteadiness has been so small that the low-frequency behaviour has not
attracted much attention in the case of a circular cylinder.

Low-frequency unsteadiness has attracted significant attention in the context of
separating-and-reattaching flows, such as flow past a backward-facing step (Eaton &
Johnston 1982) and a blunt flat plate (Kiya & Sasaki 1983, 1985; Cherry, Hillier &
Latour 1984). Here the primary imprint of low frequency is in the slow back and forth
streamwise oscillation of the reattachment point. Eaton & Johnston (1982) suggested
that the low-frequency unsteadiness is associated with a near two-dimensional vertical
movement of the shear layer as a consequence of an instantaneous imbalance between
the entrainment from the recirculation region along the shear layer and the reinjection
of fluid near the reattachment point. Later measurements by Kiya & Sasaki (1985)
confirmed this suggestion, but the amplitude of vertical oscillation was observed to be
only 2.5% of the blunt flat plate’s thickness. Cherry et al. (1984) associated the low-
frequency unsteadiness with the characteristic time scale of relaxation between two
different phases of shedding, and attempted to explain the cause of back and forth
oscillation in the instantaneous reattachment point. Low-frequency unsteadiness was
also observed in cavity flow (Rockwell & Naudascher 1979; Rockwell & Knisely 1980),
primarily caused by the feedback of disturbances from the impingement point to the
shear layer.

In spite of the above investigations, many aspects of the low-frequency behaviour
still remain largely unexplored and unexplained. A detailed three-dimensional
description of the process is in particular lacking. Here we will present results from a
well-resolved direct numerical simulation of flow past a normal plate at Re¯ 250.
Even at this modest Reynolds number, the drag and lift coefficients exhibit a strong
low-frequency component and show striking resemblance to the corresponding high-
Reynolds-number results (Najjar 1994; Lisoski 1993; Schewe 1983). Thus the wake of
a normal plate at Re¯ 250 captures the essential features of low-frequency
unsteadiness without the added complexities of a highly turbulent flow in the wake.
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The present Re¯ 250 flow is by no means simple or regular ; it is reasonably complex
in order to support low-frequency unsteadiness, but simple enough to allow for
detailed investigation of the instantaneous and phase-averaged vortical structures of
the wake. It is observed that the low-frequency unsteadiness is primarily three-
dimensional in nature and can be described as the process of flow gradually varying
between two different states of three-dimensionality. These two three-dimensional
states can be characterized by their coherence (or incoherence) ; the state of high mean
drag is marked by reasonably regular spanwise and streamwise vortical structures,
while the state of low mean drag is marked by spanwise vortices which are torn apart
and an incoherent distribution of streamwise vortices. A simple filter has been
developed to separately identify the spanwise and streamwise vortical structures, which
allows evaluation of their individual statistics. Based on this, the three-dimensional
states are characterized.

The paper is organized as follows. A brief discussion of the simulation details will
be presented in §2. A detailed characterization of the low-frequency behaviour is
presented in §3. To facilitate discussion, two distinctly different shedding regimes are
defined: one corresponds to high mean drag, while the other corresponds to low mean
drag. The details of the Ka! rma! n vortex formation and its dynamics within these two
shedding regimes and their connection to the observed drag and lift behaviour are
addressed in §4. A detailed discussion on the observed two different modes of three-
dimensionality and statistics on spanwise and streamwise vortices in each of these
modes is presented in §5. Section 6 presents a discussion of the present results in the
context of other relevant observations and conjectures a possible physical mechanism
for the observed low-frequency behaviour. Finally, §7 presents a brief conclusion.

2. Computational details

The time-dependent Navier–Stokes equations along with the incompressibility
constraint are solved in three dimensions. All quantities are non-dimensionalized with
the plate height (h

p
) and the free-stream velocity (U¢) as the length and velocity scales

(see figure 1). The Reynolds number is then the only non-dimensional parameter,
defined as Re¯ h

p
U¢}ν, where ν is the kinematic viscosity. The governing equations

are discretized in time using a second-order-accurate, time-splitting procedure. The
convective and diffusive terms are represented by a fully explicit Adams–Bashforth
scheme. Although the explicit representation of the viscous terms requires a small time-
step size at low Reynolds number, this restriction is somewhat eased at higher
Reynolds numbers. The spatial discretization is accomplished with a high-order-
accurate collocated finite-difference stencil along the streamwise (x) and cross-stream
(y) directions. Along the spanwise direction (z) a Fourier discretization is used with a
uniform distribution of points. Further details can be found in Najjar & Vanka
(1995b), and Najjar (1994).

The computational domain extends from 5 non-dimensional units upstream of the
normal plate in the streamwise direction (x) to 20 non-dimensional units in the
downstream direction. In the cross-stream (y) direction it extends from ®L

y
to ­L

y
,

where L
y
¯ 8. The spanwise width of the computation domain is chosen to be L

z
¯ 2π

and a periodic boundary condition is used along the spanwise direction. This choice for
the periodic spanwise extent was guided in part by the recent three-dimensional
stability results for circular and square cylinders (Barkley & Henderson 1996;
Williamson 1996; Robichaux, Balachandar & Vanka 1998). As will be seen below, the
spanwise extent of the computational domain is large enough to accommodate from
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F 1. Schematic showing the normal flat plate and the extent of the computational domain. The
origin of the coordinate system is fixed on the plate. The x-axis represents the downstream direction,
the y-axis is cross-stream to the flow, and the z-axis is along the plate axis. The x, y grid resolution
consists of 192¬128 nodes. The mesh resolution in the spanwise direction is 48 nodes with a grid size
of 2π}48¯ 0.13.

five to six pairs of three-dimensional streamwise (rib) vortical structures along the span
and therefore is adequate in resolving all the spanwise flow variations. The present
simulation at Re¯ 250 employed a grid of 192¬128¬48 nodes along the streamwise,
cross-stream and spanwise directions, respectively. In order to better resolve the near-
wall flow features a smoothly varying non-uniform grid was used in the streamwise and
cross-stream directions.

The following boundary conditions are applied along the edges of the computational
domain: (i) At the inlet to the computational domain a uniform non-dimensional
streamwise velocity of unity, and zero cross-stream and spanwise velocities are
specified. Further, the normal gradient of pressure is set to zero in the solution of the
pressure Poisson equation. (ii) At the top and bottom boundaries, free-stream
conditions (u¯ 1, p¯ �¯w¯ 0) are imposed. (iii) At the outlet of the computational
domain, a convective boundary condition is applied. The effectiveness of the convective
outflow boundary condition in the context of finite-difference methods has been
addressed by Lowery & Reynolds (1986), Pauley, Moin & Reynolds (1990) and Najjar
(1994). A convective velocity of 0.8 was chosen a priori based on the experiments of
Kiya & Matsumura (1988). This was subsequently found to agree well with the
convective velocity inferred from the current simulation. (iv) Along the spanwise
direction a periodic boundary condition, [u(x, y, z, t)¯u(x, y, z­L

z
, t)], was enforced.

A thorough investigation of the effects of domain size, outflow boundary condition and
grid resolution on the flow dynamics has been performed by Najjar (1994). In
particular, it must be stressed that spurious resonant instabilities that can arise from
outflow boundary conditions are not observed in the present simulation.

Results from a three-dimensional simulation at Re¯ 250 will be reported. The time-
step size, ∆t, is set to 4¬10−$, which maintains the convective (CFL) and diffusive
numbers under their respective stability limits. The three-dimensional computation
was started from the corresponding two-dimensional result with a random spanwise
perturbation applied to the streamwise velocity in the vicinity of the plate for a brief
period of 250 time steps to drive the flow into a three-dimensional shedding state. The
saturation of the three-dimensional mode has been monitored by following the
volume-integrated streamwise vorticity magnitude (Ω¯ !!!rω

x
rdxdydz), shown in
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F 2. Transition from a two-dimensional flow to a three-dimensional flow is monitored with the
temporal signature of the volume-integrated streamwise vorticity magnitude, !!! rω

x
rdxdydz. The

flow is fully three-dimensional by about t¯ 100.

figure 2. This quantity provides a sensitive measure of three-dimensionality and in
particular three-dimensional vortical structures (Mittal & Balachandar 1995a). Ω is
identically zero in the two-dimensional state and with the introduction of three-
dimensionality it initially increases exponentially due to linear instability. The
saturation of three-dimensionality by nonlinear mechanisms is characterized by the
levelling-off of Ω, which in figure 2 occurs after around 80 non-dimensional units. The
quasi-periodic oscillation of Ω is indicative of the chaotic nature of the saturated three-
dimensional shedding state. The simulation was integrated further for up to 512 non-
dimensional time units. At this Re we observe an average shedding period of 6.5 non-
dimensional time units, hence the present computation spans approximately 66
shedding cycles. The computations were performed on the massively parallel CM5 and
the entire simulation required approximately 500 CPU hours on a 128 node partition.
The pressure and three-dimensional velocity fields have been stored every hundred time
steps (0.4 time units) thus providing approximately 16 flow dumps every shedding
cycle. These dumps are processed a posteriori to compute time and phase-averaged flow
structures which will be discussed in detail in the following sections.

3. Shedding and low-frequency components of drag and lift

3.1. Comparison of two- and three-dimensional simulations

Figures 3(a) and 3(b) illustrate the temporal variation in the instantaneous drag
coefficient, C

D
, as computed from two- and three-dimensional simulations, respectively.

In the case of the three-dimensional simulation, the drag coefficient is based on the
span-averaged drag force on the normal plate. As observed by many earlier
investigators (for example, Najjar & Vanka 1995a ; Mittal & Balachandar 1995a ;
Chua et al. 1990; Tamura, Ohta & Kuwahara 1990) the two-dimensional simulation
considerably overpredicts the drag coefficients with a mean C

D
of 3.36. The mean drag

coefficient predicted by the three-dimensional simulation is 2.36. Thus, even at the
present low Reynolds numbers of Re¯ 250, restriction to two-dimensionality results
in an approximately 42% overprediction of mean drag. The drag coefficient computed
in the three-dimensional simulation is somewhat larger than the range of experimentally
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F 3. Time variation of (a) the drag coefficient obtained from the two-dimensional simulation,
(b) the drag and lift coefficients obtained from the three-dimensional simulation, (c) experimental
results of Lisoski (1993) at Re¯ 6000. The drag coefficient oscillates at twice the Ka! rma! n shedding
frequency. The two-dimensional simulation captures a periodic drag variation with a primary non-
dimensional shedding period of 3.6. The shedding period obtained in the three-dimensional
simulation is about 6.2. Also in the experiment and in the three-dimensional simulation a strong low-
frequency unsteadiness can be seen.

measured value of 1.8 to 2.15 (Fage & Johansen 1927; Abernathy 1962; Castro 1971;
Arie & Rouse 1956; Lisoski 1993). However, the Reynolds number of these experiments
is generally much larger and furthermore if blockage and leakage effects are accounted
for (Abernathy 1962 and Maskell 1963) then the corrected experimental and
computational drag coefficients approach each other.

The fundamental difference between the two- and three-dimensional simulations is
brought out well in the corresponding instantaneous contours of spanwise vorticity
(ω

z
) shown in figures 4(a), 4(b) and 4(c). In the case of the three-dimensional

simulation, contours of the span-averaged spanwise vorticity are plotted on the (x, y)-
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F 4. Contour plots of instantaneous spanwise vorticity, ω
z
, in the near wake of the normal flat

plate computed from (a, b) two-dimensional simulation at two different times, (c) three-dimensional
simulation. Span-averaged values are presented in the case of the three-dimensional computation.
Dashed (solid) contours represent clockwise (counterclockwise) rotation. Three sets of contour levels
are used: (³0.25 to ³1.0 in steps of 0.25), (³1.0 to ³5.0 in steps of 0.5) and (³5.0 to ³10.0 in steps
of 1.0).

plane. The first striking difference is in the structure of the shear layers developing from
the edges of the plate located at y¯³"

#
and x¯ 0. In the three-dimensional simulation,

the shear layer is seen to extend downstream up to two plate heights before roll-up into
Ka! rma! n vortices. In two dimensions, the shear layers roll-up much closer to the plate.
Further, in the three-dimensional simulation, the vortices can be seen to break-up into
smaller vortices farther downstream for x" 8, whereas in the two-dimensional
simulation the Ka! rma! n vortices undergo no such break-up; they remain strong and
distinct and maintain their coherence as they convect parallel to the centreline.
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F 5. Distribution of the mean pressure coefficient, C{
p
, along the plate surface obtained from

experiments and computations. The experimental data of Fage & Johansen (1927) and for Re¯
1.5¬10& and the computational results of Lisoski (1993) are obtained from a two-dimensional
discrete-vortex method. Both current two-dimensional and three-dimensional results are presented.
Also shown are the distributions of mean pressure coefficient obtained by time integration only within
regimes H and L of the present three-dimensional simulation.

Occasional interaction between the vortices can be observed for x" 12. For example,
in figure 4(a) the clockwise and anticlockwise vortices that are about to exit the
computational domain can be seen to strongly interact at x¯ 20. While at another
instant in time shown in figure 4(b), the Ka! rma! n vortices exiting the computational
domain do not exhibit strong interaction, upstream Ka! rma! n vortices at x¯ 15 show
strong interaction. Nevertheless, the absence of three-dimensionality in the form of
vortex stretching and tilting preserves the form of these spanwise vortices without
much distortion.

The compact vortices that form closer to the normal plate in the two-dimensional
simulation are responsible for the higher suction pressure along the base and result in
a significantly higher drag. This can be seen in figure 5, where the distribution of the
mean pressure coefficient, C{

p
¯ 2(pa*®p$¢)}(ρU #¢), based on the time- and span-

averaged dimensional pressure, pa*, is plotted around the surface of the plate. In terms
of the computed non-dimensional mean pressure distribution, pa , the pressure coefficient
can be written as C{

p
¯ 2(pa®p¢). Also presented are the experimental data of Fage &

Johansen (1927) and the computational results of Lisoski (1993) using the discrete-
vortex method. The current three-dimensional simulation compares well with the
experimental data, whereas the two-dimensional as well as the discrete-vortex
simulations predict a significantly lower base pressure and do not capture the ‘flat ’
distribution of pressure on the back side of the plate. The near constant pressure in the
base region, measured in the experiments is, however, well captured by the three-
dimensional simulation. The non-uniform pressure distribution along the base and the
higher suction have been observed in the two-dimensional simulation of other bluff
body geometries as well (Mittal & Balachandar 1995a ; Tamura et al. 1990).

In the two-dimensional simulation (figure 3a), the drag coefficient exhibits a
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dominant periodic time variation with a period of about 3.6 non-dimensional time
units driven by the Ka! rma! n vortex shedding process in the wake. This translates to a
primary two-dimensional shedding period of 7.2, since the drag coefficient oscillates at
twice the shedding frequency. Apart from this dominant frequency, a low-amplitude
low-frequency unsteadiness can also be observed to be superimposed on the drag
variation. This low-frequency unsteadiness appears to occur with a period of about 10
times the fundamental period of drag variation or 5 times the period of the Ka! rma! n
vortex shedding process.

Oscillations at twice the shedding frequency can be observed in the instantaneous
span-averaged drag signature of the three-dimensional simulation as well (see figure
3b) ; however, the amplitude of drag oscillation at this frequency is greatly diminished.
The overprediction of fluctuation in the drag coefficient at twice the shedding
frequency, observed in the two-dimensional simulation, is consistent with earlier
findings in other bluff body geometries (Mittal & Balachandar 1995a). Also plotted in
figure 3(b) is the corresponding variation in the instantaneous span-averaged lift
coefficient, C

L
, computed in the three-dimensional simulation. For a normal plate of

zero thickness, at zero angle of attack the pressure distribution around the plate
contributes only to the drag force. The instantaneous lift force is solely due to the net
y viscous shear on the front and back sides of the plate. The vertical (or y) viscous shear
stress on the plate can be expressed in terms of the non-dimensional spanwise vorticity
as µU¢ ω

z
}h

p
. The instantaneous coefficient of lift can then be expressed in terms of the

non-dimensional spanwise vorticity distribution around the plate as

C
L
¯

2

Re 9&
"/#

−"/#

(ω
z,Back

®ω
z,Front

) dy: ,
where ω

z,Front
and ω

z,Back
define spanwise vorticity on the front and back faces of the

normal plate. The mean period of vortex shedding observed in the lift coefficient is
T
p
¯ 6.2, corresponding to a primary shedding (or Strouhal) frequency of F

p
¯

1}T
p
¯ 0.16. Thus, restriction to two-dimensionality results in not only overprediction

of the mean and fluctuating drag and lift forces, but also a 16% overprediction of
the primary vortex shedding period.

The drag and lift coefficients reveal a strong component of unsteadiness at a much
lower frequency with a long period of approximately ten times that of the main vortex
shedding process. The nature of low-frequency unsteadiness observed in the three-
dimensional simulation appears to be significantly different from that observed in the
two-dimensional simulation. The low-frequency component in the two-dimensional
simulation is due to the Ka! rma! n vortex interaction process seen in figures 4(a) and
4(b). Such interaction occurs every five shedding cycles or so, thus explaining the
observed low-frequency component in the drag coefficient (see figure 3a). The Ka! rma! n
vortex interaction can be clearly observed only sufficiently downstream of the normal
plate for x" 10 and as a result the amplitude of the low-frequency component in figure
3(a) is significantly smaller than that at twice the shedding frequency. In contrast, in
the three-dimensional simulation the variation in drag coefficient is significantly
stronger at the low frequency than at twice the shedding frequency.

In three dimensions, the Ka! rma! n vortices do not exhibit the same kind of periodic
interaction as observed in two dimensions. The physical mechanism responsible for the
low-frequency unsteadiness observed in the three-dimensional simulation is distinctly
different from that at work in the two-dimensional simulation and as will be
demonstrated below it relies upon the different modes of three-dimensional instabilities.
The difference is quite evident in the drag signature shown in figures 3(a) and 3(b). In
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figure 3(a) the low frequency can be considered as a simple superposition on the
shedding process, whereas in figure 3(b) apart from superposition, the low frequency
also modulates both the amplitude and frequency of the shedding process.

A three-dimensional simulation at a higher Reynolds number of Re¯ 1000 also
displays a similar strong low-frequency component in the drag and lift signatures
(Najjar & Vanka 1995a). It is important to point out that the temporal variation of
drag and lift coefficients shown in figure 3(b) closely resembles the experimental
measurements of C

D
and C

L
by Lisoski (1993) shown in figure 3(c) for Re¯ 6000. For

the case of a circular cylinder, similar behaviour for drag and lift coefficients can be
observed in the experimental results of Schewe (1983) over a high-Reynolds-number
range of 5¬10% to 7¬10' (see his figures 13 and 14). Similar low-frequency
unsteadiness has also been observed in the context of separating-and-reattaching flows
(Eaton & Johnston 1982; Kiya & Sasaki 1983, 1985; Cherry et al. 1984).

3.2. Characterization of low-frequency unsteadiness

Even at the modest Reynolds number of Re¯ 250, the wake dynamics as predicted in
the present three-dimensional simulation is quite complex and the resulting drag and
lift variations as shown in figure 3(b) are fairly irregular. However, the primary
shedding and low-frequency components appear to dominate the essentially chaotic
behaviour. In the case of the lift coefficient, C

L
, its variation to first approximation can

be adequately represented as a low-frequency modulation of lift variation at the
primary shedding frequency. The lift variation can then be approximately expressed as:
a
L
sin# (πF

s
t) sin (2πF

p
t­φ

L
), where φ

L
is the phase angle between the primary

shedding and low-frequency modulation processes. Here a
L

represents the amplitude
of the low-frequency modulated lift variation. The shedding (primary) and secondary
low frequencies are denoted by F

p
and F

s
, respectively.

In the case of the drag coefficient, a low-frequency component can be clearly
identified. The mean drag evaluated over each shedding cycle can be observed to vary
between 2 and 3. Although not as clear as in the lift variation, a low-frequency
modulation of the drag coefficient can also be identified. The amplitude of drag
variation over a shedding cycle is large when the mean drag is large (at tE 225, 250,
300 and 375), whereas when the mean drag is low, variation in drag coefficient over a
shedding cycle is nearly absent (at tE 210, 275 and 350). The drag variation can be
approximately expressed as: C{

D
­a

D"
sin# (πF

s
t) sin (4πF

p
t­φ

D
)®a

D#
cos (2πF

s
t),

where C{
D

is the time-averaged mean drag coefficient and φ
D

is the phase angle. Here
a
D"

and a
D#

represent the amplitudes of the contribution to the drag coefficient from
the modulated shedding process and the low-frequency unsteadiness, respectively. The
amplitude of the low-frequency component, a

D#
, is observed to be larger than the

amplitude of modulated shedding process, a
D"

. In comparison, in the two-dimensional
simulation (figure 3a) the low-frequency modulation of the shedding process is
virtually non-existent, and the low-frequency contribution to the drag coefficient is at
a relatively low amplitude.

A careful examination of the drag and lift coefficients plotted in figures 3(b) and 3(c)
shows that not only the amplitude but also the shedding frequency is significantly
modulated by the low-frequency unsteadiness. This frequency modulation is more
evident in figure 6 which shows a close-up of the time history of the drag and lift
coefficients spanning 100 non-dimensional time units from t¯ 412 to 512, covering
approximately two low-frequency periods. To quantify the amplitude and frequency
modulations, the beginning of each Ka! rma! n shedding cycle is arbitrarily defined by the
local peak value of C

L
. Thus shedding cycles are defined to extend between adjacent
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F 6. Modulation of (a) the drag and (b) lift coefficients during the time period extending from
t¯ 412 to 512 covering two low-frequency cycles. Four regimes are identified and are denoted as the
regime of high drag (marked H), the regime of low drag (marked L), the regime of increasing drag
(marked I), and the regime of decreasing drag (marked D). Their temporal extents are demarcated
by the vertical lines. The mean drag and lift coefficients averaged within each shedding cycle, C{ Sh

D
and

C{ Sh

L
, are plotted as (IEI).

peaks in the lift coefficient. For each shedding cycle, the shedding period, T
p
, the mean

coefficients of drag and lift, C{ Sh
D

and C{ Sh
L

, and amplitudes of drag and lift variation, aSh
D

and aSh
L

, are computed. The amplitudes of drag and lift variation are simply defined as
half the difference between the maximum and minimum values of the drag and lift
coefficients, respectively, during that cycle.

In figure 6(a) overlaid on the drag coefficient is a plot of C{ Sh
D

versus t, where the time
for each shedding cycle is taken to be at the mid-point of the cycle. By definition, the
time variation in C

D
captured by C{ Sh

D
accounts for only the contribution to the drag

coefficient from the low-frequency component and the difference between C
D

and C{ Sh
D

is due to the Ka! rma! n vortex shedding process. Thus the temporal variation in C{ Sh
D

shows an approximately sinusoidal behaviour arising from the low-frequency
unsteadiness, whose amplitude provides an estimate for a

D#
of about 0.5.
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F 7. Distribution of (a) the amplitude of the drag oscillation, aSh

D
, (b) the amplitude of the lift

oscillation, aSh

L
, and (c) the shedding frequency, against the phase along the low-frequency cycle, Φ.

Φ¯ 0 and 2π correspond to time instants of low drag and Φ¯π corresponds to time instants of high
drag. Analytical models of the amplitudes of drag and lift coefficient variation within each shedding
cycle are presented as solid lines : (a) a

D"
sin# (Φ}2) with a

D"
¯ 0.3, (b) a

L
sin# (Φ}2) with a

L
¯ 0.12. In

the distribution of shedding frequency, data from the four different regimes are marked by four
different symbols. A possible hysteresis in shedding frequency between increasing and decreasing
phase of low-frequency unsteadiness is sketched as two solid lines in (c). A general trend of higher
shedding frequency with increasing mean drag can be identified in (c).

Each cycle of low-frequency unsteadiness is arbitrarily defined to extend between
two adjacent minima of C{ Sh

D
(from one point of minimum C{ Sh

D
to the next). Based on

this definition, at any time instance the corresponding phase during the low-frequency
cycle can be defined as

Φ¯ cos−" 0 2(C{ Sh
D

®C{
D
)

(C{ Sh
D,max

®C{ Sh
D,min

)1 . (1)

The time-averaged mean drag coefficient, C{
D

¯ 2.36, is also the average of C{ Sh
D

over
many low-frequency cycles. Further, C{ Sh

D,min
and C{ Sh

D,max
are the minimum and

maximum of C{ Sh
D

and therefore the denominator is approximately given by 2a
D#

. With
the above definition, the low-frequency phase can be computed at any given time and
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F 8. Autocorrelations of drag and lift coefficients are represented by solid and dashed lines
respectively. The dominant peak in the autocorrelation of lift corresponds to a shedding period of
about 6.2, while the dominant peak in the drag coefficient corresponds to low-frequency period of
about 65.5. The peak corresponding to the low-frequency unsteadiness in the lift coefficient suggests
a slightly longer period of about 71.88.

it is in the range 0%Φ% 2π. The low-frequency phases, Φ¯ 0 and 2π, correspond to
time instances of overall low drag (C{ Sh

D
UC{ Sh

D,min
), while Φ¯π corresponds to

instances of high drag (C{ Sh
D

UC{ Sh
D,max

).
The amplitude and frequency modulation of the shedding process by the low-

frequency unsteadiness can now be extracted by plotting the shedding period, T
p
, and

the amplitudes of drag and lift variation, aSh
D

and aSh
L

, over each shedding cycle against
the corresponding phase, Φ, along the low-frequency cycle. In figures 7(a) and 7(b), aSh

D

and aSh
L

, for 47 different shedding cycles are plotted against the low-frequency phase
(computed from equation (1)) at the mid-point of the shedding cycle. Also plotted is
the approximate form of the low-frequency modulation of drag and lift coefficients :
a
D"

sin# (Φ}2) and a
L
sin# (Φ}2). The scatter in the data points is indicative of the

chaotic nature of the shedding and low-frequency processes, which is quite evident
from the time history of drag and lift coefficients (see figure 3). Nevertheless the data
points show the same qualitative trend as the analytical expression. The approximate
amplitudes of drag and lift modulation can be estimated from these figures as
a
D"

¯ 0.3 and a
L
¯ 0.12, respectively. Thus it can be seen that drag variation due to

low-frequency unsteadiness (2a
D#

) is about 67% larger than drag variation due to
the shedding process (2a

D"
).

Figure 7(c) shows variation in the primary shedding frequency (F
p
¯ 1}T

p
) against

the corresponding low-frequency phase for 47 shedding cycles. A general trend of
higher shedding frequency (or lower shedding period) with increasing mean drag (ΦU
π) can be identified. Extraction of an exact form for this frequency modulation is made
difficult by the scatter in the plot, but significant variation in shedding frequency from
about 0.12 to 0.18 can be observed. The data points in this figure are marked by four
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different symbols : filled squares indicate shedding cycles during which the mean drag
was low; up-triangles indicate shedding cycles during which the mean drag is on the
rise ; filled circles correspond to cycles of high mean drag; and finally down-triangles
correspond to cycles of decreasing mean drag (more precise classification will be
provided below). In addition to the general trend of increasing shedding frequency with
increasing phase (or mean drag), as indicated in the plot, a tendency towards hysteresis
can also be identified.

It must be cautioned that the functional forms presented above for the drag and lift
coefficients are intended to serve only as a model, since the actual low-frequency effect
neither simply superposes nor simply modulates the Ka! rma! n vortex shedding process.
Significant nonlinear interaction exists between the mechanisms responsible for
Ka! rma! n vortex shedding and low-frequency unsteadiness resulting in a chaotic wake
dynamics. The complex nature of low-frequency unsteadiness is clear from the fact that
that its period does not remain fixed. It can be observed that the low-frequency period
varies anywhere between 35 and 55 non-dimensional time units. Furthermore, the low-
frequency unsteadiness appears to be asymmetric, resulting in relatively longer
duration of quiescence and low mean drag separated by comparatively shorter
duration of intense vortex shedding and high mean drag. Such asymmetry in the low-
frequency unsteadiness was originally suggested by Eaton & Johnston (1982). Based on
surface pressure measurements Kiya & Sasaki (1985) have estimated the time duration
of low drag to extend nearly twice as long as that of high drag in a reattaching flow
over a blunt plate. These observations are consistent with the behaviour of the drag
coefficient shown in figure 3(b). Thus the strength of the shedding process appears to
influence the nature of the low-frequency unsteadiness as well.

3.3. High, low and transition drag regimes

A simple physical interpretation of the low-frequency behaviour seen in the drag and
lift variations is that the flow periodically varies between two extreme states : an active
state of strong vortex shedding marked by large-amplitude oscillation in drag and lift
and a weak vortex shedding state marked by low levels of drag and lift variation. The
existence of such distinctly different shedding states has been previously inferred based
on experimental measurements by Kiya & Sasaki (1985). As remarked above, the total
duration of these states need not be equal and the frequency of Ka! rma! n vortex
shedding is significantly higher in the active state than in the relatively weaker state.
Based on the close-up shown in figure 6, four different flow regimes have been identified
as follows:

(i) The high-drag regime (marked H) encompasses the time interval where the drag
coefficient is large and the corresponding lift coefficient shows large fluctuations. In
figure 6 this occurs over the following time intervals : t¯ 413–419 and t¯ 467–485.

(ii) The low-drag regime (marked L) represents the time interval where the drag
coefficient is low with a correspondingly low level of fluctuation in the lift coefficient.
This regime is observed to occur for t¯ 426–462 and t" 492.

(iii) The transition regimes (marked D and I) represent the transition regimes that
link regimes H and L. Regimes D and I represent regions with decreasing and
increasing drag coefficient, respectively. In figure 6 the time frames during which these
transitions occur at t¯ 419–426, t¯ 485–492 and t¯ 462–467.

Autocorrelations of the drag and lift coefficients computed over the entire period are
shown in figure 8. The shedding period of T

p
¯ 6.2 is well captured by the dominant

peak in the autocorrelation of lift, while the influence of the shedding process is seen
to have only a weak effect on the autocorrelation of drag. The dominant peak in the
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drag correlation corresponds to a low-frequency period of T
s
¯ 65.5. Thus the low-

frequency unsteadiness of the wake is at about one tenth of the shedding frequency.
This ratio between the shedding and low frequencies is an agreement with the
experimental measurements of Lisoski (1993) for the flow over a normal plate and with
the spectral simulation results of Henderson (1994) for flow over a circular cylinder. In
the case of a separating-and-reattaching flow over a blunt flat plate Kiya & Sasaki
(1985) observe a low frequency of 1}6th the shedding frequency. Other measurements
(Roshko 1954; Tritton 1959; Gerich & Eckelmann 1982; Williamson 1992; Szepessy
1994) also place the low frequency to be about one tenth to one twentieth of the
shedding frequency. Small undulations in the drag autocorrelation are due to
oscillations in the drag coefficient at twice the shedding frequency. To illustrate the
difference in shedding frequency between the high and low regimes, the autocorrelation
of lift within each of these regimes was computed. From the dominant peak it was seen
that the average shedding periods in regimes H and L are about 5.96 and 7.0,
respectively. The corresponding mean shedding frequencies are 0.167 and 0.143,
respectively. These frequencies computed from the autocorrelation are in good
agreement with the average frequencies of 0.162 and 0.148 estimated in regimes H and
L from figure 7(c). The corresponding average frequencies in the transition regimes I
and D are 0.169 and 0.144. Thus there is about 20% variation in the shedding period
over the low-frequency cycle see (figure 7c). A similar large variation in the shedding
period over a low-frequency cycle has also been observed by Dauchy et al. (1997). The
wide range of shedding frequency see in figure 7(c) is consistent with the range of
frequency from 1.2 to 1.6 reported from experimental measurements (Fage & Johansen
1927; Abernathy 1962; Kiya & Arie 1980; Lisoski 1993).

3.4. Streamwise �elocity signature and its autocorrelation

While global quantities such as drag and lift coefficients have clearly exhibited the
presence of low-frequency unsteadiness, it is important to assess its impact on velocity
measurements at isolated points in the wake. Such velocity measurements in the wake
are more common than drag and lift measurements. Therefore, it remains to be seen
if the low-frequency behaviour can be inferred from the single-point velocity signature.
In figures 9(a), 9(b) and 9(c) temporal variations of the streamwise velocity component
measured at three different downstream points x¯ 1, x¯ 4 and x¯ 8 are plotted. All
three points are located at y¯ 0.5 and z¯π}2. Oscillation in the streamwise velocity
component at the shedding frequency is quite clear in the immediate wake (x¯ 1) and
at x¯ 8, whereas at the intermediate location of x¯ 4 the streamwise velocity
signature is far more complex. Occasional large departures from the near periodic
behaviour can be seen as ‘glitches’, which are most evident at x¯ 8 for tE 270–285
and tE 430–460. As can be seen from figure 3(b), these time intervals precisely coincide
with regime L. While the signature of the low-frequency unsteadiness is clearly evident
at the downstream velocity probe at x¯ 8, this behaviour is not so evident in the other
two near-wake velocity signatures.

The corresponding autocorrelations of the streamwise velocity component are
shown in figures 9(d ), 9(e) and 9( f ). At x¯ 8 the most dominant peak in the
autocorrelation corresponds to a shedding period of about 6.12 and the second most
dominant peak corresponds to a low-frequency period of about 65.56. Both these
values are in good agreement with those obtained from the drag and lift coefficients.
The near-wake probe at x¯ 1 extracts a reasonably consistent shedding period of
about 6.44 and a low-frequency period of about 65.48, even though the signature of the
low frequency is not immediately apparent in the velocity signature. In spite of its
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F 9. Time signals of the streamwise velocity component at three streamwise locations,
(a) x¯ 1, (b) x¯ 4, and (c) x¯ 8. The cross-stream and spanwise locations of all three points are
y¯ 0.5 and z¯π}2, respectively. Note that the ‘glitches ’ in (c) (marked with arrows) are qualitatively
similar to those due to vortex dislocations, discussed in Williamson (1992). Corresponding
autocorrelations of the velocity signals at (d ) x¯ 1, (e) x¯ 4, ( f ) x¯ 8 are also shown. The periods
of the primary Ka! rma! n shedding (T

p
) and the secondary low-frequency unsteadiness (T

s
) are marked.

This clearly shows that the low-frequency unsteadiness is not just limited to global variables such as
the lift and drag coefficients.

complexity, the velocity signature at x¯ 4 extracts a shedding period of about 6.96 and
a longer period of about 65.68 can also be discerned. Hence, we believe that
identification of the low-frequency unsteadiness, if any, is possible based solely on hot-
wire probes, especially with the use of autocorrelation. Furthermore, the low-
frequency unsteadiness is not just restricted to global measurements, it is a complex
phenomenon experienced by the entire flow field. Based on their velocity and surface
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pressure measurements Kiya & Sasaki (1985) also make a similar observation that
the low-frequency unsteadiness is a global event felt everywhere within the recirculation
bubble (and possible outside as well).

The ‘glitches’ in the streamwise velocity seen in figure 9(c) are similar to those
observed by Williamson (1992) in the case of a circular cylinder at around a non-
dimensional downstream distance of xE 10. He pointed out that these glitches are
associated with vortex dislocations which appear in the wake transition regime.
Velocity measurements at a series of downstream locations from x¯ 5 to x¯ 40
showed that, while the shedding frequency dominates the velocity signature at x¯ 10,
the low-frequency unsteadiness associated with the glitches dominates the spectrum
farther downstream. It was also observed that the shedding frequency with and without
vortex dislocations is different and that the shedding frequency decreases with the
presence of dislocations (also see Williamson 1996). The difference in the shedding
frequency between the high- and low-drag regimes observed in the present simulation
is consistent with these results.

3.5. Pressure and Reynolds stress distributions in the wake

The spatial distributions of the time- and span-averaged pressure coefficient within
regimes H and L are presented in figures 10(a) and 10(b), respectively. Also marked in
the figures as thick lines are the boundaries of the mean recirculation region. The non-
dimensional length of the circulation region in the wake, defined as the distance from
the base to the reattachment point (marked R in figure 10), is 1.70 and 3.13 in regimes
H and L respectively. The corresponding half-heights of the recirculation region
(defined as the maximum cross-stream distance from the centreline to the periphery of
the mean recirculation region) in regimes H and L are 0.72 and 0.92. The repeated
shrinkage and expansion of the mean recirculation region as the flow state changes
between regimes H and L is consistent with previous observations of significant
oscillation in the reattachment point along the longitudinal direction (Kiya & Sasaki
1985; Eaton & Johnston 1982). The non-dimensional length and half-height of the
mean recirculation region computed over all the four regimes are 2.35 and 0.8,
respectively. In comparison the experimental measurements of Bradbury & Moss
(1975) and Leder (1991) at much higher Reynolds numbers of Re¯ 2.64¬10% and
2.8¬10% showed a mean wake recirculation length of 1.92 and 2.50, respectively. The
two-dimensional simulation predicts an extended mean recirculation region of length
13.75. Balachandar, Mittal & Najjar (1997) have summarized various experimental
and computational results for the circular cylinder where the non-dimensional length
of the mean recirculation region is observed to vary from 1.1 to 2.0. It is thus evident
that the wake cavity length is significantly larger for the normal flat plate than for the
circular cylinder.

The suction pressure in the wake is significantly higher in regime H than in regime
L. For example the lowest pressure coefficient of about ®3.0 is reached approximately
at x¯ 0.8 in regime H, while the pressure coefficient in regime L reaches only about
®1.6 at around x¯ 1.5. The significantly smaller mean wake bubble in region H is
consistent with the higher suction pressure and the higher mean drag. The distributions
of the time- and span-averaged pressure coefficient on the upstream and downstream
faces of the normal flat plate computed separately in regimes H and L are also shown
in figure 6. Regime L yields a near constant pressure coefficient value of ®1.35 on the
downstream face while Regime H results in a higher suction pressure coefficient of
®2.1. The overall flow pattern falls between those of regimes H and L, leading to a
base pressure coefficient of ®1.63. In comparison, the two-dimensional computation
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F 10. Contour plots of time- and span-averaged pressure coefficient in (a) regime H and (b)
regime L. The contour levels in (a) extend from ®3.0 to ®0.4 in steps of 0.1 and in (b) from ®1.5
to ®0.4 in steps of 0.1. The value of the base pressure coefficients on the downstream face of the
normal plate are ®2.1 and ®1.5 in regimes H and L, respectively. The mean wake recirculation
region for each regime is identified by the zero-streamline of the time- and span-averaged velocity field
and drawn as thick contour lines. The reattachment point is marked R. The length of the mean wake
recirculation region is computed from x¯ 0 to R and the half-height is defined as the maximum
cross-stream (y) distance from the centreline to the periphery of the mean recirculation region.
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predicts a base pressure coefficient of ®2.8. Thus the behaviour of regime H is closer
to the two-dimensional simulation than regime L.

Consistent with the smaller compact recirculation region, in regime H the Reynolds
stresses are distributed in the wake close to the base of the normal plate, whereas in
regime L the Reynolds stresses are distributed farther away from the immediate base
and in fact both the streamwise normal and shear stresses are nearly zero for x! 0.75.
Furthermore, the peak Reynolds stresses in regime H are nearly 60% stronger than
those in regime L (Najjar & Balachandar 1997). The low level of Reynolds stresses in
the near-wake region for regime L suggests that here the shear layers are nearly two-
dimensional and reasonably time independent and therefore the delayed roll-up
process contributes to the Reynolds stresses only away from the immediate wake of the
normal plate. These differences in the Reynolds stress distribution are similar to those
observed between two-dimensional and three-dimensional simulations by Mittal &
Balachandar (1995a) for a circular cylinder. The higher suction pressure and the
significantly enhanced drag in regime H are directly related to the stronger Reynolds
stresses observed in the immediate wake. A significant contribution to the Reynolds
stresses come from the dynamics of the Ka! rma! n vortices. Therefore the fundamental
difference in the Ka! rma! n vortex dynamics between regimes H and L will be explored
below in the following section.

4. Ka! rma!n vortex dynamics

4.1. Phase a�erage and swirling strength

In order to clearly identify the spanwise Ka! rma! n and streamwise vortices and gain
further insight into their dynamics, in this section we will first define the vortex
identification technique employed here along with the necessary phase-averaging
technique. The spanwise and streamwise vortices are visualized by plotting contours of
their swirling strength, λ

i
, defined as the imaginary part of the complex eigenvalue of

the velocity-gradient tensor, ¡u. In regions dominated by local straining motion all
three eigenvalues of the velocity gradient tensor are real, whereas when vortical motion
locally dominates over the straining motion, two of the eigenvalues of ¡u becomes
complex-conjugate (Perry & Chong 1987). In this case it can be shown that there exists
a plane where local streamlines are spiralling, suggesting the presence of a vortex
(Chong, Perry & Cantwell 1990; Zhou et al. 1997). Furthermore, the magnitude of the
imaginary part of the complex-conjugate eigenvalues captures the strength of the
spiralling motion and is thus termed the swirling strength, and the corresponding
eigenvectors define the plane of spiralling motion (Zhou et al. 1997). At spatial
locations where all three eigenvalues are real, λ

i
is set to zero; thus regions of positive

λ
i
can be used to identify vortices with the magnitude of λ

i
representing the local vortex

strength (Dallmann et al. 1991; Mittal & Balachandar 1995b ; Zhou et al. 1997). The
swirling strength has the same dimension as vorticity (or velocity gradient) ; in a purely
vortical flow (without any strain) its magnitude is half of the local vorticity. The
swirling strength has the advantage that it avoids misinterpreting shear layers from
rolled-up vortices. This vortex identification procedure is applied here to the full-three-
dimensional flow field and the corresponding three-dimensional swirling strength,
denoted by λ

i,$D
, simultaneously extracts both the spanwise and streamwise vortices.

To individually extract the spanwise and streamwise vortices we also employ the
vortex identification procedure to velocity data on two-dimensional (x, y)-, (y, z)- and
(x, z)-planes (Zhang, Balachandar & Tafti 1997). The corresponding planar swirling
strengths will be denoted by λ

i,xy
,λ

i,yz
and λ

i,xz
, respectively. The structure of spanwise
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Ka! rma! n vortices is extracted from the (x, y)-swirling strength, λ
i,xy

, and will be
denoted as λ

i,p
(to indicate primary vortex structure). This quantity is in general three-

dimensional (dependent on x, y and z) due to distortions in the spanwise Ka! rma! n
vortices along the spanwise (z) direction. The streamwise vortices, also often referred
to in the literature as the streamwise ribs, that connect the adjacent spanwise Ka! rma! n
vortices are normally tilted in the (x, y)-plane and are not purely oriented along the
streamwise (x) direction. A combined measure of (y, z) and (x, z) swirling strengths as
given by λ

i,s
¯ (λ#

i,yz
­λ#

i,xz
)"/# will be used to identify these vortices. Here, we will

correctly refer to λ
i,s

as the cross-span swirling strength or the secondary swirling
strength (hence the subscript s), whereas, for conformity, the cross-span vortices will
be addressed by their commonly used terminology as the streamwise vortices or
streamwise ribs.

In order to reduce the background fluctuations and enhance the Ka! rma! n vortex
dynamics, here we follow the phase-averaging technique originally proposed by
Reynolds & Hussain (1972) and Cantwell & Coles (1983) and apply it separately within
the different regimes. The flow variables such as (u, p,λ) are considered to consist of
three main components : a time- and span-averaged mean (ua , pa ,λa ), a periodic (uh , ph ,λh ),
and a random component (uW , pW , λW ) as follows: (u, p,λ)¯ (ua , pa ,λa )­(uh , ph ,λh )­(uW , pW ,λW ).
According to this definition the periodic component, which arises from the dominant
shedding process, and the random component together contribute to the total
perturbation away from the time- and span-average (i.e. (u«, p«,λ«)¯ (uh , ph ,λh )­
(uW , pW ,λW )). The coherent component, also referred to as the phase-averaged component,
denoted by (uh a , ph a ,λh a ), is defined as the sum of the time- and span-averaged and
periodic parts as : (uh a , ph a ,λh a )¯ (ua , pa ,λa )­(uh , ph ,λh ).

In the present study, each shedding cycle, which is arbitrarily defined to start with
a local peak in the lift coefficient and extend up to the next peak, is divided into eight
phases of equal extent each covering one-eighth of the shedding cycle. All the three-
dimensional data dumps are first sorted according to the four flow regimes: H, L, D
and I, respectively. Within each regime the dumps are further sorted into the eight
phase bins, according to the time of the data dump (or the phase) within the shedding
cycle. All data sets in a phase bin within each regime, are averaged to obtain the phase-
averaged or the coherent component. The phase-averaging procedure also includes an
average along the span and therefore the phase-averaged variables are two-dimen-
sional and will be denoted by [uh a ]

k
(x, y) or [λh a ]

k
(x, y), where k¯ 1,…, 8 is the phase bin

number. The large number of data sets considered in this study along with the limited
number of phase bins guarantee a reasonably converged phase average within each bin.

4.2. Phase-a�eraged spanwise swirling strength

First, the evolution of the spanwise Ka! rma! n vortices are followed separately in regimes
H and L. Attention is focused on phase-averaged coherent component of the span-
wise swirling strength, [λh a

i,p
]
k
. Figure 11(a–d ) presents contours of [λh a

i,p
]
k
for the first four

phases (k¯ 1–4) in regime H. This sequence covers one half of the shedding cycle,
and swirling strength for phases 5–8 can be obtained from the other four phases with
appropriate symmetry about the wake centreline of the following form: [λh a

i,p
]
k
(x, y)¯

[λh a
i,p

]
k−%

(x,®y). Hence, the evolution of the Ka! rma! n vortices over the entire shedding
cycle can be followed. From figure 11 the separated shear layers are seen to roll up and
form new spanwise vortices very close to the flat plate within the region of x! 1. The
separation of the rolled-up vortices from the shear layers seems to be complete within
two plate heights downstream of the normal plate (x! 2). The coherence of the
Ka! rma! n vortices is maintained up to x¯ 10 and beyond. The corresponding four
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F 11. Contours plots of the phase-averaged coherent spanwise swirling strength, [λh a
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]
k
in regime

H: (a) phase 1, (b) phase 2, (c) phase 3 and (d ) phase 4. Phases 5–8 can be obtained from the above
four by reflectional symmetry about the wake centreline. Flow is from left to right with the normal
plate at x¯ 0 extending from ®0.5! y! 0.5. Contour levels are : from 0.125 to 1.0 in steps of 0.125
and from 1.0 to 5.0 in steps of 0.25.
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phases in regime L are plotted in figure 12(a–d ). Significant differences in the wake
dynamics can be observed between regimes H and L. In regime L the roll-up of the
separated shear layers appears to be complete only farther downstream for x" 2 and
correspondingly the vortex pinch-off from the shear layer is delayed to xE 3. This
difference in the dynamics of the spanwise vortices clearly explains the shrinkage of the
mean recirculation region from regime L to H.
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F 13. (a) Streamwise evolution of the peak strength of the coherent Ka! rma! n vortex core in
regime H (——^——) and regime L (– – –E – – –). The peak strength of the vortex core is defined
as the maximum magnitude of the spanwise swirling strength within the vortex (see figures 11 and 12).
(b) Typical Ka! rma! n vortex trajectories (circles and triangles) and the location of the upper and lower
shear layer centres, y

c
(squares), in regimes H and L. Open and closed symbols denote regimes L and

H, respectively.

Figure 13(a) presents the evolution of the coherent vortex core strength as it travels
in the downstream direction for regimes H and L, measured in terms of the maximum
magnitude of λh a

i,p
within the vortex core. Since vorticity is approximately twice the

swirling strength, the peak vorticity magnitudes in regimes H and L are approximately
8 and 3, respectively. Near the separation point (xC 0) the initial strength of the
Ka! rma! n vortex in regime H is a factor of 2.5 higher than that in regime L. Although
the spanwise vortices in regime H decay at a faster rate as they evolve downstream and
appear to approach the strength of the corresponding vortices in regime L, even at
x" 15 the spanwise Ka! rma! n vortices in regime H are nearly twice as strong as those in
regime L. It must be stated in passing that the magnitude of phase-averaged λ

i,p
decays

to about 25% to 30% of its initial value by around x¯ 10 to 15 in both regimes H and
L. This compares favourably with the experimentally measured fraction of initial
circulation in the convected vortices in the region x¯ 10 to 16 (60% by Fage &
Johansen 1927, 43% by Roshko 1954, 30% by Bloor & Gerrard 1966 and 26% by
Davies 1976).

The trajectories of the clockwise and counter-clockwise Ka! rma! n vortex cores in the
upper and lower halves of the (x, y)-plane are plotted in figure 13(b) for regimes H and
L. In both regimes the spanwise vortices evolve nearly parallel to the x-axis. The
primary differences are that in regime H the vortices form closer to the plate and that



Low-frequency unsteadiness in the wake of a normal flat plate 125

they remain closer to the wake centreline. Also plotted in this figure are the centres of
the time-averaged upper and lower shear layers, y

c
, for both regimes H and L.

Following the conventional definition used in mixing layers, y
c

is defined as the
transverse location at which the time- and span-averaged streamwise velocity has a
value of 0.67∆ua­ua

min
, where ∆ua ¯ ua

max
®ua

min
is the velocity difference between the

maximum velocity, ua
max

, on the high-speed side and the minimum velocity, ua
min

, on the
low-speed side. The position of the mean shear layers as well as the Ka! rma! n vortex
trajectories suggest that as the wake goes through the low-frequency cycle, the shear
layers will appear to undergo a transverse oscillation. Eaton & Johnson (1982) have
conjectured such a low-frequency vertical oscillation of the shear layer. Experimental
measurements by Kiya & Sasaki (1985) have confirmed the vertical oscillation of the
shear layer but the amplitude of oscillation was observed to be only 2.5% of the blunt
flat plate’s thickness. Recent measurements in the shear layers of a circular cylinder
(Prasad & Williamson 1997) have shown that the vertical motion of the shear layer is
at most 8% of the shear layer thickness, which itself is a small fraction of the cylinder
diameter.

Interpretation of the shear layer centre shown in figure 13(b) requires some caution.
First of all, y

c
is obtained from a mathematical definition based on the time-averaged

flow, so one is able to obtain a value for y
c
even downstream after the shear layers have

rolled up into Ka! rma! n vortices. Although the difference in centres of the shear layers
between regimes H and L at x¯ 1 appears to be about 0.2, the roll-up of the shear
layers in regime H occurs close to the plate, well upstream of x¯ 1. For x! 0.5, the
shear layer centres in regimes H and L are less than 10% of the plate height apart. This
is still substantially larger than the vertical movement estimated by Prasad &
Williamson (1997), which may be the result of differences in the geometry and the
Reynolds number. Nevertheless, characterization of the low-frequency unsteadiness as
‘shear layer flapping’ (as sometimes done in the past) does not provide a complete
description of the observed behaviour. The forward and backward movement of the
formation region is much more pronounced than the up and down motion of the shear
layers. Of course these two movements are interrelated. Furthermore, as will be seen
below, the low-frequency unsteadiness has its origin in the three-dimensional state of
the wake. Therefore here we will consistently adhere to the terminology ‘ low-frequency
unsteadiness ’.

4.3. Connection to drag and lift �ariation

The above observations on the dynamics of the spanwise Ka! rma! n vortices in regimes
H and L are completely consistent with the drag and lift variations reported in the
earlier sections. First of all, the spanwise vortices in regime H are compact and they
form close to the base of the normal plate and their dynamics is such that the resulting
time- and span-averaged mean wake recirculation region is small and compact (see
figure 10a). On the other hand, the roll-up process is delayed in regime L resulting in
an extended mean wake recirculation region. The periodic shedding of the strong
compact spanwise vortices in regime H directly contributes to the enhanced Reynolds
stress components in the immediate wake. On the other hand, in regime L the Reynolds
stresses are weaker and are distributed farther away from the base, consistent with the
observed delayed vortex roll-up process. As a result of the enhanced Reynolds stresses
in the immediate wake, the associated time- and span-averaged mean pressure along
the base is significantly lower in regime H than in regime L (Mittal & Balachandar
1995a), contributing to significantly higher drag in regime H when compared to regime
L. The periodic exchange between the shedding of strong compact Ka! rma! n vortices of
regime H and weaker shedding process in regime L directly contributes towards the
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observed low-frequency component of the drag coefficient. Owing to the symmetry of
the wake about its centreline, the mean lift within each shedding cycle is constrained
to be nearly zero. Thus there is no low-frequency component superposed on the lift
coefficient, as in the drag coefficient.

For the normal plate, the fluctuating lift force over each shedding cycle is due to the
fluctuating viscous shear stress on the back side of the plate. The periodic shedding of
strong compact clockwise and counter-clockwise Ka! rma! n vortices in regime H directly
translates to a large-amplitude fluctuation in the lift coefficient over each shedding
cycle, whereas in regime L the less compact Ka! rma! n vortices shed farther away from
the base have less of an impact on the viscous shear stress that acts on the back face
of the normal flat plate. As a result, the variation in lift coefficient during the shedding
process is weak in regime L. On the other hand, fluctuations in the drag force are due
to oscillations in the pressure distribution around the normal plate, primarily at twice
the shedding frequency. The strong compact vortices of regime H correspond to large
pressure fluctuations as well. As indicated in Mittal & Balachandar (1995a), although
pressure fluctuates at the shedding frequency, its distribution around the normal plate
at this frequency has a near front–back symmetry that it makes little contribution to
drag. On the other hand, fluctuation in pressure at twice the shedding frequency is also
strong. At this frequency, the pressure distribution around the normal plate is such that
it makes a strong contribution to drag variation. Owing to the weaker vortex shedding
process in regime L, uh and �h are generally smaller in magnitude and distributed farther
away from the base. Based on this, the near absence of drag variation during a
shedding cycle in regime L can be justified.

Finally, there is ample evidence to suggest an inverse relation between the strength
and coherence of the shed spanwise Ka! rma! n vortices and the period at which they are
shed. This also translates to an inverse relation between the length of the Ka! rma! n
vortex formation region (or the length of the mean wake recirculation region) and the
frequency of shedding. For example, an increase in net circulation of the shed vortices
with increasing Reynolds number contributes to an increase in the shedding frequency.
The shedding process can be considered to be the act of a newly forming spanwise
vortex moving towards the centreline and cutting off the continued supply of vorticity
to the earlier vortex of opposite sign from its shear layer. The movement of these
vortices is in turn governed by their mutual induction. Thus with increasing strength
of the spanwise vortices, their induced velocities increase, resulting in reduced shedding
period and increased shedding frequency. This line of argument sufficiently explains the
observed low-frequency modulation of the shedding frequency.

Two distinct states of vortex shedding have also been observed by Kiya & Arie
(1980) in their discrete-vortex simulations of flow over a normal plate. Regimes L and
H closely resemble their state I and state II vortex shedding. They observe that in stage
I, the separated shear layers extend farther downstream and result in a formation
region of length 55% more than in state II. While in the present computation a
continuous low-frequency switching between regimes H and L is observed, in the
discrete-vortex simulations of Kiya & Arie (1980) state I (or regime L) was observed
only during the initial transients of the computation. State I was generally observed to
be unstable and give way to an eventual state II (or regime H) behaviour. As we will
see below, this may be an artifact of the two-dimensional limitation of their discrete-
vortex simulation. Nevertheless, many of the features of regimes H and L outlined
above are in agreement with the observations of Kiya & Arie (1980). They observe the
non-dimensional shedding frequency to be approximately 0.25 in state II and 0.2 in
state I. As pointed out by Kiya & Arie (1980), these values are somewhat larger, owing



Low-frequency unsteadiness in the wake of a normal flat plate 127

to the two-dimensional nature of the discrete-vortex simulations, and do not
quantitatively compare with the shedding frequencies of 0.162 and 014 for regimes H
and L. But the qualitative trend remains the same in both simulations. Their time-
averaged C

D
measured in state I was approximately 2.0, while state II yielded a much

higher mean drag coefficient of about 3.0. Furthermore, consistent with the present
observations, it can be seen in their time history of C

D
that the drag variation over a

shedding cycle in state I was negligible when compared to the strong cyclic variation
in state II.

An interesting comparison can also be made with the behaviour of wakes behind
cylinders undergoing forced vibration. In the lock-in (or synchronized) regime, the
formation length decreases systematically with increased amplitude of vibration of the
cylinder (Griffin & Votaw 1972 and Griffin & Ramberg 1974). While the formation
length is intimately related to the streamwise length of the mean recirculation region,
the amplitude of vibration of the cylinder in the forced case plays an analogous role
to the amplitude of drag and lift variation in the unforced wake. Furthermore, Griffin
and coworkers observed that as the frequency of forcing is increased the scale of the
formation region decreases. Thus the relation between the amplitude, frequency and
the nature of the vortex roll-up process observed in the present computation in regimes
H and L appears to hold good even in the case of forced wakes.

5. Distinct modes of three-dimensionality

The above section clearly characterized the two different states of Ka! rma! n vortex
shedding in regimes H and L. In this section we will explore mechanisms responsible
for these two distinct states of vortex shedding. The marked difference between the
two-dimensional and three-dimensional simulation results, along with the absence of
a strong low-frequency component in the case of the two-dimensional simulation,
suggests that the difference between regimes H and L has its root in their respective
three-dimensional structure. Figure 14(a) shows a perspective view of the three-
dimensional vortical structure in regime H, plotted in terms of an iso-surface of three-
dimensional swirling strength, λ

i,$D
¯ 1.0. The flow is from left to right and the

corresponding top and bottom views are shown in figures 14(b) and 14(c). This
instantaneous plot at t¯ 416 corresponds to an instance in regime H. Marked in this
figure are two generations of clockwise Ka! rma! n vortices (CR0 and CR1) appearing
from the top shear layer and three generations of counterclockwise vortices (CCR0,
CCR1 and CCR2) appearing from the bottom shear layer. Noticeable spanwise
distortion is present even in the newly forming counterclockwise-rotating Ka! rma! n
vortex (CCR0), which is clearly visible in the bottom view. The distorted spanwise
vortices are connected by streamwise vortices (or streamwise ribs). The spanwise extent
of the computational domain is sufficiently wide to accommodate about five pairs of
streamwise vortices in the near-wake region (see §6 for details).

The organization of spanwise and streamwise vortices in figure 14, although hardly
perfect, is reasonably well structured, especially when compared to the corresponding
three-dimensional structure in regime L. In figures 15(a), 15(b) and 15(c), the
perspective, top and bottom views of an iso-surface of λ

i,$D
¯ 1.0 are shown at t¯ 456

in regime L. This time instant corresponds to a point of minimum lift during regime
L. The delayed roll-up of the spanwise Ka! rma! n vortices is evident. The counter-
clockwise-rotating spanwise vortex (CCR1) that has just detached from the bottom
shear layer is seen to be torn apart in the spanwise direction. The detached clockwise
vortex CR1 is in fact distorted to an extent that it cannot be clearly identified. Many
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streamwise vortices can be identified but their size, shape and spatial organization are
far more irregular. Some of the streamwise looking vortices appear to have their origin
in the pieces of distorted spanwise vortices that are torn apart and tilted in the
streamwise direction. The conversion of spanwise vorticity from the Ka! rma! n vortex
cores into streamwise vortices is at the heart of core and elliptic instability
(Pierrehumbert & Widnall 1982; Corcos & Lin 1984; Waleffe 1990) and mode-A
instability of bluff body wakes (Williamson 1996). A similar scenario of large chunks
of spanwise vorticity escaping from the core of Ka! rma! n vortices to form streamwise
vortices has previously been identified in the context of spanwise subharmonic
instability and period doubling in the wake of a circular cylinder (Mittal &
Balachandar 1995b).

Apart from the above two time instants, the three-dimensional vortex structure
behind the normal plate was carefully analysed at several other times as well. In
addition to the three-dimensional visualization, the distribution of swirling strength (or
vorticity) was examined systematically on a series of (x, y)- and (y, z)-planes, at the
various time instants considered. The detailed structure of both the spanwise and
streamwise vortices showed variability from shedding cycle to shedding cycle in both
regimes H and L. Nevertheless, the following common features can be identified to be
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F 16. (a, c) Contour plots of span-averaged instantaneous spanwise swirling strength, ©λ
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,

in (a) regime H at t¯ 416 and (c) regime L at t¯ 456. Clockwise-rotating (CR) and counterclockwise-
rotating (CCR) Ka! rma! n vortices are numbered and marked. (b, d) Contour plots of span-averaged
instantaneous streamwise swirling strength ©λ

i,s
ª
z
, in (b) regime H at t¯ 416 and (d ) regime L at

t¯ 456. Streamwise ribs connecting the Ka! rma! n vortices are marked as R0, R1, etc. Contour levels
are 0.125 to 1.0 in steps of 0.125 and from 1.0 to 5.0 in steps of 0.25.

characteristic of regimes H and L. In regime H the Ka! rma! n vortices undergo significant
distortion in the spanwise direction, but generally remain distinct from the streamwise
vortices. In each braid region between the Ka! rma! n vortices, a finite number of
streamwise vortices are seen, which remain coherent, concentrated and spatially
compact. On the other hand, in regime L the spanwise vortices are torn apart and
broad regions of streamwise vorticity can be identified. Although some compact
streamwise vortices can be identified, the distribution of streamwise vorticity is in
general diffused and not organized. In what follows the above observations will be
quantified with appropriate statistics.

5.1. Span-a�eraged statistics

The three-dimensional vortical structures shown in figures 14 and 15 clearly include
both the spanwise Ka! rma! n vortices and the streamwise vortical ribs. To separately
quantify the spanwise and streamwise vortices, the instantaneous velocity field was
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used to compute the corresponding spanwise and cross-span swirling strengths, λ
i,p

and λ
i,s

. The span-averaged values of these two quantities is defined as

©λ
i,p

ª
z
¯

1

L
z

&Lz

!

λ
i,p

dz and ©λ
i,s

ª
z
¯

1

L
z

&Lz

!

λ
i,s

dz. (2)

Thus, contours plots of ©λ
i,p

ª
z
and ©λ

i,s
ª
z
on the (x, y)-plane are expected to provide

information on the span-averaged strength of spanwise Ka! rma! n and streamwise rib
vortices, respectively. Figures 16(a) and 16(b) show contour plots of ©λ

i,p
ª
z
and ©λ

i,s
ª
z

in regime H corresponding to the time instant shown in figure 14. As can be seen in
figure 16(a), ©λ

i,p
ª
z
clearly extracts Ka! rma! n vortices that are typical of regime H, and

they are marked CR0, CCR0, CR1, CCR1, etc. In figure 16(b), the streamwise ribs
connecting the spanwise vortices can be identified and they are marked R0, R1, etc.
However, the spanwise Ka! rma! n vortices can also be identified in figure 16(b). This is
due to the strong bending and distortion of the spanwise Ka! rma! n vortices and as a
result they make a significant contribution to the cross-span swirling strength as well.
In other words, ©λ

i,s
ª
z
receives contributions both from the streamwise vortices and

the distorted spanwise Ka! rma! n vortices. Thus the unconditional spanwise average of
cross-span swirling strength is not entirely successful in isolating the streamwise
vortical ribs.

The corresponding span-averaged measures of spanwise and cross-span swirling
strength corresponding to figure 15 of regime L are shown in figures 16(c) and 16(d ).
To facilitate direct comparison, the contour levels are maintained the same in all the
four plots. Consistent with the tearing of the spanwise vortices, in figure 16(c) coherent
spanwise vortices are not observed downstream of x¯ 12. As pointed out earlier, the
plot of ©λ

i,s
ª
z

in figure 16(d ) receives contributions both from the streamwise rib
vortices and the distorted spanwise Ka! rma! n vortices. Nevertheless, in comparison to
figure 16(b), this plot suggests spatially distributed streamwise vorticity with only a
weak resemblance to streamwise vortical ribs connecting spanwise vortices. Based on
these figures it is tempting to conclude that the streamwise vortex ribs are more active
in regime H than in regime L. Such a conclusion is not supported by the three-
dimensional visualizations (figures 14 and 15), since significant streamwise rib activity
is seen in both regimes H and L. The proper interpretation of figures 16(b) and 16(d )
is that in regime H, the streamwise vortices are coherent along the spanwise direction
in order to make a significant contribution to the spanwise average, whereas in regime
L the streamwise vortices, although nearly equally active, are not coherent along the
spanwise direction and therefore do not make a unified contribution to the spanwise
average.

5.2. Cross-stream (y,x) plane-a�eraged statistics

In figure 17(a) the streamwise distribution of spanwise Ka! rma! n vortex strength,
measured in terms of the (y, z) plane-average of the spanwise swirling strength defined
as

©λ
i,p

ª
yz

¯
1

2L
y
L

z

&Ly

−Ly

&Lz

!

λ
i,p

dydz, (3)

is plotted for both regimes H and L corresponding to the two time instants shown in
figures 14 and 15. The peaks correspond to the different clockwise- and counter-
clockwise-rotating spanwise vortices. The presence of strong spanwise vortices in the
immediate vicinity of the normal plate is clear in regime H, whereas for regime L the
first significant peak occurs only at xE 2.5. The plots if scaled by the area of cross-
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F 17 (a). Streamwise evolution of the instantaneous (y, z)-plane-averaged spanwise swirling
strength, ©λ
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z
, gives

the total swirling strength of the Ka! rma! n vortices at any streamwise location. (b) As (a) but the plane-
averaged spanwise swirling strength inversely scaled by the fractional area, A

p
, occupied by the

primary Ka! rma! n vortices in any (y, z)-plane, ©λ
i,p

ª
yz
}A

p
. This appropriately scaled quantity provides

the true intensity or the average concentration of swirling strength within the spanwise vortices. The
solid line denotes regime H (t¯ 416), and the broken line denotes regime L (t¯ 456).

section (2L
y
L

z
) provide the total spanwise swirling strength at any streamwise

location. Instead, if the averaging procedure were to be restricted to only regions where
spanwise vortices are present (i.e. regions where λ

i,p
" 0; note that outside the

spanwise vortex λ
i,p

¯ 0) then one obtains the true intensity or the average
concentration of swirling strength within the spanwise vortices. In other words, figure
17(a) needs to be inversely scaled by the fractional area, A

p
, occupied by the spanwise

Ka! rma! n vortices in any (y, z)-plane, which is defined as

A
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(x, y, z, t) dydz, where I
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4

1 if λ
i,p

" 0

0 if λ
i,p

¯ 0.

(4)

The resulting plots of ©λ
i,p

ª
yz

}A
p
, shown in figure 17(b) for regimes H and L, are

similar to those shown in figure 17(a). The fractional area occupied by the spanwise
vortices ranges from about 6% close to xE 0, where the spanwise vortices are
compact, to about 10% farther downstream, where the spanwise vortices are more
diffused. As pointed out in §4.1, in vorticity-dominated regions the swirling strength is
approximately half the local vorticity. So the counter-clockwise vortex (CCR0) seen in
figure 16(a) to just form downstream of the normal plate is centred around x¯ 0.5 and
has an average non-dimensional vorticity concentration of about 5.0 at this streamwise
location. The vorticity concentration at the subsequent downstream vortices decreases
due to diffusive and dissipative processes. The dominant counterclockwise vortex in
regime L seen in figure 16(c) is centred around x¯ 2.5 and the average vorticity
concentration at this central streamwise location is only about 2.6.

In figure 17(a) the sharp peaks observed in regime H are indicative of the
compactness of the spanwise vortices. In between the peaks, ©λ

i,p
ª
yz

reaches near zero
value, thereby clearly marking a well-defined braid region in between the spanwise
vortices. The distinction between the spanwise vortices and the interconnecting braid
regions is somewhat less well defined in regime L, especially for x" 10. Owing to
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swirling strength of the streamwise vortices at any streamwise location.

tearing and spreading, the spanwise vortices are more evenly spread along the
streamwise direction without a strong peak–valley structure in ©λ

i,p
ª
yz

. In the near
wake, the overall magnitude of the spanwise swirling strength is larger in regime H than
in regime L, whereas the overall magnitude appears to be nearly the same farther
downstream; the only difference is that the spanwise vorticity remains concentrated
and focused into compact spanwise vortices in regime H, while it is more diffused in
regime L. Thus some level of caution needs to be exercised in comparing figures 16(a)
and 16(c). Fewer contours farther downstream in figure 16(c) must correctly be
interpreted as lack of coherence rather than lack of spanwise vorticity.

In figure 18 the distribution of cross-span swirling strength averaged over the entire
(y, z)-plane, defined as

©λ
i,s

ª
yz

¯
1

2L
y
L

z

&Ly

−Ly

&Lz

!

λ
i,s

dydz, (5)

is plotted for both regimes H and L, corresponding to the two time instants shown in
figures 14 and 15. As pointed out earlier, these plots when scaled by 2L

y
L

z
provide the

total cross-span swirling strength at any streamwise location. A comparison of the
regimes H and L shows that if the entire streamwise direction is taken into account, the
cross-span swirling strength is about the same in both regimes. It can be observed that
in regime H the x-location of peaks in the cross-span swirling strength coincide with
those of peaks in the spanwise swirling strength. This may at first seem surprising since
the streamwise ribs are anticipated to be most active in the braid region between the
spanwise vortices. As pointed out earlier with reference to figure 16(b), the bending and
distortion of the spanwise vortices also contribute to cross-span swirling strength.
Although the concentration of swirling strength in the streamwise ribs is expected to
be stronger, the streamwise ribs are spaced apart along the spanwise direction, whereas
the distorted spanwise vortices occupy the entire spanwise extent. Thus the overall
contribution of distorted spanwise vortices to the (y, z)-plane-averaged cross-span
swirling strength, ©λ

i,s
ª
yz

, is likely to be comparable to that from the streamwise ribs.
The overlap of spanwise and cross-span swirling strengths can also be seen in regime
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L, but at a much reduced level since the spanwise vortices are torn apart and
distributed along the streamwise direction.

5.3. Conditional a�erage of cross-span swirling strength

In order to quantify the strength of the streamwise ribs, without the inclusion of the
distorted spanwise vortices, in the following we will consider the conditional average
of cross-span swirling strength in regions outside the distorted spanwise vortices. In
order to accomplish this, we first define a filter function I

s
(x, y, z, t), which will serve to

isolate the streamwise ribs. The filter function will be simply defined as follows:

I
s
(x, y, z, t)¯

1

2

3

4

1 if λ
i,s

"λ
i,p

and λ
i,s

" 0

0 otherwise,
(6)

and λ
i,s

I
s

will now be used to identify the streamwise ribs. In other words, the
streamwise vortices are identified as regions of positive cross-span swirling strength
greater than the local spanwise swirling strength. The need to separate the streamwise
ribs from distorted spanwise vortices in their measurement of streamwise vorticity was
originally identified by Hayakawa & Hussain (1989). In their case, the nature of the
experimental measurement and the higher Reynolds number required a complex set of
conditions to filter the streamwise ribs. It will be shown below that for the present case,
the filter given in equation (6) will be sufficient to extract the streamwise ribs.

In figures 19(a), 19(b) and 19(c), contours of the three-dimensional swirling
strength, λ

i,$D
, unfiltered cross-span swirling strength, λ

i,s
, and filtered cross-span

swirling strength, λ
i,s

I
s
, are plotted on a (y, z)-plane corresponding to the streamwise

location x¯ 1.5, for t¯ 416 (regime H). From figures 16(a) and 16(b), it can be seen
that this plane primarily cuts through the streamwise ribs, R1, and the clockwise
spanwise vortex CR0. In figure 19(a) the three-dimensional swirling strength can be
seen to extract both the distorted spanwise vortex and the streamwise ribs which
connect CR0 and CCR1. About ten streamwise vortices can be identified in this
section. In the corresponding unfiltered cross-span swirling strength all of the
streamwise vortices are still clearly extracted, but much of the spanwise vortex is
eliminated. Some imprint of the distorted spanwise vortex can still be seen, in
particular in regions where the spanwise vortex is tilted the most. Finally, in figure
19(c) the efficacy of the filter function (equation (6)) can be observed. The filtered cross-
span swirling strength, λ

i,s
I
s
, while retaining all the streamwise ribs intact, essentially

removes all of the distorted spanwise vortex. Close examination of figures 16(a) and
16(b), and also the three-dimensional visualization (figure 14), shows that the small
patches of filtered cross-span swirling strength seen in figure 19(c) above the spanwise
vortex at around y¯ 0.6 are in fact related to the downstream tips of the newly
forming streamwise ribs, R0.

Based on the filter function presented in equation (6), the following two quantities
are defined:

©λª
rib

(x, t)¯
1

2L
y
L

z

&Lz

!

&Ly

−Ly

λ
i,s

(x, y, z, t) I
s
(x, y, z, t) dydz, (7a)

A
rib

(x, t)¯
1

2L
y
L

z

&Lz

!

&Ly

−Ly

I
s
(x, y, z, t) dydz, (7b)

where A
rib

measures the fractional area on the (y, z)-plane occupied by the streamwise
ribs and ©λª

rib
measures the total swirling strength (inversely scaled by the area of the
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F 19. Contour plots of (a) three-dimensional swirling strength, λ
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, (b) unfiltered cross-span
swirling strength, λ
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, and (c) filtered streamwise swirling strength, λ
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I
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, in the (y, z)-plane at

x¯ 1.5 for time instant t¯ 416 (regime H). About ten streamwise ribs can be seen in all three plots,
but the influence of the distorted spanwise Ka! rma! n vortex has clearly been filtered out in (c). Contour
levels are from 0.25 to 1.75 in steps of 0.5 and from 2.0 to 9.0 in steps of 1.0.

y, z-plane, 2L
y
L

z
) contained within the streamwise ribs at any streamwise location.

©λª
rib

and A
rib

can further be averaged over many different time instants covering all
phases during the shedding cycle ; the resulting time-averaged statistics, (2L

y
L

z
©λª

rib
t)

and A
rib

t, in regimes H and L are shown in figures 20(a) and 20(b), respectively.
In the very near wake for x! 2.5, the total strength of the streamwise ribs in regime

H is higher than in regime L. This is understandable, since in regime L the fully rolled-
up spanwise vortices form only farther downstream. In the intermediate region
between x¯ 2.5 and x¯ 5, the total swirling strength of the streamwise ribs in regime
L is about the same as that in regime H. Farther downstream, regime H has the larger
total strength of the streamwise ribs, possibly because of the fact that the highly
dispersed streamwise ribs observed in regime L undergo faster decay as they evolve
downstream. The plot of fractional area of the streamwise ribs shown in figure 20(b)
is very informative. It clearly shows that in the near-wake region, for x! 3, the
streamwise ribs in regime L have a larger cross-sectional area consistent with their lack
of spatial compactness. Farther downstream, the fractional area gradually increases
downstream in both regimes suggesting diffusion of streamwise vorticity, but the
fractional area of the streamwise ribs in regime H becomes larger than that in regime
L. The intensity or the average concentration of swirling strength within the streamwise
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©λª
rib

t, (b) fractional area, A
rib

t, occupied by the ribs in the (y, z)-plane and (c) the intensity of the
average concentration of swirling strength within the streamwise ribs measured as the ratio of swirling
strength to the fractional area of the ribs, ©λª

rib

t}A
rib

t. The solid lines denote regime H, and broken
lines denote regime L. Quantities have been averaged both in the (y, z)-plane and in time.

ribs can be assessed by the following ratio: (©λª
rib

t}A
rib

t), which is plotted for both the
regimes in figure 20(c). The strength of the streamwise ribs is seen to peak at xE 1.2
and xE 3.5 in regimes H and L respectively and decay downstream. Figure 20(c) can
be compared to figure 17(b) to gauge the relative strength of the spanwise vortices and
the streamwise ribs at any streamwise location. Note that figure 17(b) presents an
instantaneous picture, while figure 20(c) also involves an average over time and
therefore provides a time-averaged picture. In regime L the dominant peak in figure
17(b) is of about the same magnitude as the peak seen figure 20(c), suggesting that the
spanwise and streamwise vortices are of about the same average intensity. This result
gives some support to the notion that in regime L the streamwise vortices have their
origin in the distorted spanwise vortices. On the other hand, in regime H the peak
intensity of the streamwise vortices (measured either in terms of swirling strength or in
terms of vorticity) is about 60% of the dominant spanwise vortex.

6. Discussion

The characteristic three-dimensional vortex structure observed in regime H is in
many ways similar to that of mode-B three-dimensional instability (Williamson 1996;
Barkley & Henderson 1996; Mittal & Balachandar 1995c). Coherent streamwise
vortices are observed and they appear to be distinct from the distorted spanwise
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the time instant t¯ 416, in regime H. Light shades represent low values of the correlation and dark
shades correspond to high values. Contours levels are from 0.15 to 0.45 in steps of 0.05. Apart from
the dominant peak at ∆y¯0 and ∆z¯ 0, a second peak at ∆yE 0 and ∆zE 0.6 can also be observed
corresponding to a non-dimensional spanwise wavelength of about 1.2.

vortices. An estimation of the average spanwise spacing between the streamwise ribs
can be obtained from a two-point correlation of the filtered cross-span swirling
strength, defined as

R(∆y,∆z, t)¯
1

2L
x
L

y
L

z

¬&Lz

!

&Ly

−Ly

&Lx

!

λ
i,s

(x, y, z, t) I
s
(x, y, z, t)λ

i,s
(x, y«, z«, t) I

s
(x, y«, z«, t) dxdydz (8)

where y«¯ y­∆y and z«¯ z­∆z. In figure 21 the two-point correlation computed as
shown above is plotted for t¯ 416 in regime H. Streamwise averaging is applied from
0 to L

x
¯ 2. As can be expected there is a strong peak at ∆y¯ 0 and ∆z¯ 0. The

second dominant peak occurs at a non-dimensional separation of ∆yE 0 and ∆zE 0.6,
corresponding to a non-dimensional spanwise wavelength of about 1.2. This correlation
peak is consistent with the five pairs of streamwise ribs seen in figures 14 and 19, which
corresponds to a spanwise wavelength of L

z
}5E 1.25. This appears to be somewhat

longer than the non-dimensional spanwise wavelength of the most amplified mode-B
disturbance for a circular cylinder, estimated from a Floquet stability analysis to be
0.82 (Barkley & Henderson 1996). On the other hand, for a square cylinder the most
amplified spanwise wavelength is estimated to be about 1.2 (Robichaux, 1997;
Robichaux et al. 1998). Various experiments place the non-dimensional wavelength of
mode-B instability for a circular cylinder to be around 1.0 over a range of Reynolds
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number (Mansy, Yang & Williams 1994; Lin, Towfighi & Rockwell 1995a ; Lin,
Vorobieff & Rockwell 1995b ; Wu et al. 1994; Williamson 1996; Chyu & Rockwell
1996). As can be seen from the y, z cross-sectional plots shown in figure 19, unlike in
the instability modes here the ribs are not perfectly aligned along the span.
Nevertheless, the correlation correctly predicts an average zero vertical displacement
between the streamwise ribs.

Circulation of the streamwise vortices can be computed based on figure 20 and
compared with the experimental results for mode-B shedding. From figure 20(b), in
regime H the fractional area occupied by all the streamwise vortices at xE 1, where
their intensity reaches a peak, can be estimated to be 0.026, which corresponds to a total
non-dimensional area of 2.6 (since 2L

y
L

z
E 100). With an approximate count of ten

streamwise vortices, the above estimate translates to an average non-dimensional
diameter of 0.575 for the streamwise vortices. This is consistent with the cross-sectional
plot shown in figure 19. Note that since the (y, z)-plane is not normal to the streamwise
vortices, the actual diameter and the area of cross-section of the streamwise vortices
might be somewhat smaller. The cross-sectional size, along with the average cross-span
swirling intensity of 1.7 at xE 1 (based on figure 20c), allows an estimation of the
streamwise circulation of 0.28π. This estimate compares reasonably well with the PIV
measurement of peak circulation of 0.46π for the mode-B streamwise ribs in the wake
of a circular cylinder at Re¯ 200 (Brede, Ecklemann & Rockwell 1996). Based on the
above evidence it seems reasonable to consider regime H to be dominated by mode-B
three-dimensionality.

In contrast, the nature of three-dimensionality in regime L is far more complex.
First, some aspects of the streamwise rib structure resemble those of regime H and
therefore mode-B three-dimensionality. On the other hand, the process by which the
cores of the spanwise vortices undergo large-scale deformation and become streamwise
vortices is indicative of mode-A instability (Williamson 1992). Mittal & Balachandar
(1995b) have shown that the saturated state of mode-B three-dimensionality can
undergo spanwise subharmonic instability resulting in period doubling. In this
subharmonic instability, a substantial portion of the spanwise vortices tears away and
gets stretched in the braid region to form hairpin-like vortical structures. Certain
aspects of this instability are also seen in regime L. But of more immediate relevance
is the observation by Williamson (1992, 1996) that the wake transition regime, where
mode-A instability gives way to mode-B instability, is marked by the coexistence of two
different shedding frequencies. The higher shedding frequency is associated with a
more regular three-dimensional state characterized by mode-B instability, whereas the
lower shedding frequency is associated with large-scale dislocations in conjunction
with either mode-A or mode-B shedding (referred to as mode A* or B* by Williamson
1996). He also observed that in a natural wake the two frequencies do not coexist at
one time, but the flow intermittently swaps between the lower and higher frequencies.
Regular signals interspersed with the periodic appearance of disturbed shedding cycles
associated with spanwise phase incoherence have also been observed by Szepessy
(1994). These observations are in total agreement with the behaviour of regimes H
and L.

It therefore appears that the low-frequency unsteadiness can be characterized as the
wake periodically switching back and forth between a reasonably well-organized
mode-B-like three-dimensional regime and a disorganized, dispersed regime of three-
dimensionality reminiscent of vortex dislocation. The key difference between these two
regimes is in the level of vorticity diffusion. The importance of vorticity diffusion was
addressed by Kiya & Arie (1980), who included vorticity diffusion as an external
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parameter in their discrete vortex simulations. They observed that as vorticity diffusion
is increased the wake remained in state I (regime L) for increasingly longer period after
the start-up, but eventually transitioned to state II (regime H). This is in agreement
with the present observations of coherent vs. dispersed vortical structures in regimes H
and L.

The appearance of a low-frequency unsteadiness in the wake of a circular cylinder
as a result of beating between closely related frequencies has been addressed by Tritton
(1959), Gaster (1969, 1971), and Gerich & Eckelmann (1982). By controlling the
generating of vortex dislocations with the interaction of two slightly different shedding
frequencies, Williamson (1992) has observed that the dislocations can be made to occur
at a regular rate and that the rate at which the dislocations are formed is determined
by the beat frequency. In the present case, the average frequencies in regimes H and L
are computed to be 0.162 and 0.148, respectively (see §3.3). This yields a beat frequency
of 0.014, corresponding to a beat period of about 71.5, which compares reasonable well
with the average low-frequency period of about 65.5 (see figure 8). Of course, the above
estimation of beat frequency is only approximate. As can be seen from figure 7(c), there
is no one single frequency that characterizes each of the regimes H and L; the shedding
frequency shows a continuous variation and falls over a wide range.

For the case of a circular cylinder, clear experimental evidence indicating the
coexistence of two frequencies exists only over a limited range of wake transitional
Reynolds number (180!Re! 260; Williamson 1996) and at much higher Reynolds
number (Re" 10& ; Schewe 1983). Recent computational results in the transitional
regime (Re¯ 225) suggest the presence of a low frequency (Belov et al. 1997), whereas
three-dimensional numerical simulations at higher Reynolds numbers of Re¯ 500 and
1000 (Henderson 1994) do not display any significant low-frequency behaviour. Based
on the above results for a circular cylinder it is tempting to conclude that the low-
frequency behaviour is limited to a narrow window of Reynolds number in the wake
transition regime.

For a normal plate, computational results indicate the presence of a strong low-
frequency component not only at the present modest Reynolds number of 250, but also
at a higher Reynolds number of 1000 (Najjar & Vanka 1995a). Furthermore,
experimental results by Lisoski (1993) over a wide range of Reynolds number, from
Re¯ 1000 to 12500, show a strong low-frequency component in the drag and lift
measurements, whose character is essentially the same as that observed in the present
computational results. These results seem to indicate that the low-frequency behaviour
is not just limited to a narrow Reynolds number window in the wake transition regime.
While the model of beat frequency between mode B and the dislocation mode (A* or
B*) seems to reasonably well explain the observed low-frequency unsteadiness at low
Reynolds numbers, it is not entirely clear whether the same (or at least similar beat)
mechanism is operational at higher Reynolds numbers as well. The striking
resemblance between the drag and lift coefficients of the present case (figure 3b) and
those of Lisoski (figure 3c) lends support to the idea that the mechanism might remain
the same over the entire range of Reynolds number. It then remains to be seen what
two frequencies are responsible for the beat phenomenon at higher Reynolds numbers.

Next we shall consider possible physical mechanisms responsible for the periodic
exchange of state between regimes H and L. The results of Rockwell & Naudascher
(1979) and Rockwell & Knisely (1980) for a cavity flow have shown that the low-
frequency unsteadiness has its origin in the feedback of signals from the reattachment
point to the separating shear layers. This suggests a possible resonance in the
absolutely unstable region of the wake. Eaton & Johnston (1982) envisioned that an
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unusual event may trigger a temporary imbalance through a short-term breakdown in
the spanwise vortices. The resulting decreased entrainment will lead to a temporary
expansion of the recirculation region, which after a few shedding cycles will recover
back to the original state. Kiya & Sasaki (1985) inferred from their detailed
measurements that the low-frequency unsteadiness is associated with repeated decrease
and increase in the spanwise coherence of the Ka! rma! n vortices. They further pointed
out that the spanwise breakdown has a reasonably constant period and hence the
feedback mechanism from the reattachment point to the separating shear layers
proposed by Rockwell (1983) cannot be discounted.

Cherry et al. (1984) suggested that there are two different shedding phases and that
the low-frequency unsteadiness is related to the relaxation process governing the
change over from one phase to the other. Finally, Szepessy (1994) observed that one
possible explanation for the low-frequency unsteadiness in the measured surface
pressure correlation is the appearance of perturbed shedding cycles, which are marked
by spanwise phase incoherence in the shedding process. All the above proposals are in
reasonable agreement that the low-frequency unsteadiness can be viewed as the wake
oscillating between two different regimes (or states), which are marked respectively by
enhanced spanwise coherence and its breakdown.

Further insight into low-frequency unsteadiness can be obtained by exploring the
alternative possibility of the flow establishing a near periodic state without oscillating
back and forth between two shedding regimes. Williamson (1992, 1996) has shown that
by carefully controlling the cylinder end conditions, the periodic occurrence of vortex
dislocations can be avoided and a relatively periodic pure mode-B shedding can be
obtained in the experiments. Corresponding computations performed at moderate
Reynolds numbers under controlled conditions (Henderson & Barkley 1996 and Mittal
& Balachandar 1995c) show that a nonlinearly saturated state of mode-B three-
dimensionality is possible without any dislocations. This saturated state of mode B
three-dimensional shedding is time periodic with period of oscillation only slightly
different from that of the corresponding two-dimensional shedding and is devoid of
any low-frequency component. The primary question will then be why the wake of a
normal flat plate at Re¯ 250 does not establish a near periodic state in either regime
H or regime L, but oscillates back and forth between the two regimes? In some sense,
this question is intimately related to the origin of the repeated appearance of
breakdown in spanwise coherence of the spanwise vortices or perturbed shedding or
vortex dislocations observed by previous researchers.

Mittal & Balachandar (1995c) have explored in detail the process by which
streamwise ribs are autogenerated in mode-B three-dimensional shedding and establish
a periodic state. The previously generated streamwise vortices are observed to distort
the newly forming spanwise vortices, which in turn pass this information on and result
in the formation of a new generation of streamwise vortices identical to the previous
generation. This autogeneration process was observed to establish a delicate balance
between the spanwise distortion of the spanwise Ka! rma! n vortices and the strength and
spanwise location of the streamwise vortices. Such a balance is central to the periodic
evolution of a three-dimensional wake without any low-frequency component. This
balance between the spanwise and streamwise vortical structures is intimately related
to the balance between the entrainment and reinjection processes addressed by Eaton
& Johnston (1982) and Kiya & Sasaki (1985).

A possible answer as to why low-frequency unsteadiness is observed must lie in the
inability of the spanwise Ka! rma! n vortices and the associated three-dimensional
streamwise vortex structure to establish a perfect balance in either regime H or in
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Regime Spanwise vortices Streamwise vortices

L Form farther from the base
and are less coherent

Spatially distributed

I Form farther from the base
and are less coherent

Organized

H Form closer to the base and
are compact and coherent

Organized

D Form closer to the base and
are compact and coherent

Spatially distributed

T 1. Qualitative characterization of the spanwise and streamwise vortical structures in the
different regimes of the low-frequency cycle. Regimes H and L represent shedding cycles during which
the mean drag was respectively high and low. Regimes I and D correspond to shedding periods during
which the mean drag is increasing or decreasing, respectively.

regime L. If such a balance were to be attained in the three-dimensional state
characteristic of regime H, then a periodic evolution of the wake, much like the
saturated state of mode-B instability, would ensue. On the other hand, owing to its
disorganized nature, a perfect balance in regime L cannot be expected; but the
possibility of an approximate balance and a near-periodic state, without a dominant
low-frequency component cannot be ruled out. In order to explore this balance
between the spanwise and streamwise vortices, in addition to regimes H and L, data
dumps in the intermediate transition regimes I and D, where the mean drag increases
and decreases respectively, were analysed as well. A simple qualitative characterization
of the spanwise and streamwise vortices in these four regimes is shown in table 1. The
table provides only a simple basic characterization of the spanwise and streamwise
vortices. For example, it is not implied that the spanwise vortices are of the same
strength in regimes L and I or that the ribs are of the same level of organization in
regimes I and H, etc.

The picture to be drawn from table 1 is as follows: in regime L the spanwise and
streamwise vortices are not coherent. The incoherence in the streamwise ribs arises
from the tearing of spanwise vortices. Since spanwise vortices are weak in regime L,
during subsequent evolution the incoherence in the streamwise ribs decreases and they
organize themselves in regime I, whereas the spanwise vortices are still relatively weak
and form farther from the base. The organized ribs of regime I are not nearly as strong
and therefore subsequently generated spanwise vortices are not torn apart and they
remain coherent. As a result, the spanwise vortices begin to roll up closer to the normal
plate, initiating regime H. During regime H, the organized streamwise vortices also
grow in strength. The older-generation spanwise Ka! rma! n vortices of regime H begin
to tear apart and result in a state of incoherent streamwise vortices in regime D. The
effect of the incoherent streamwise ribs is still not felt in the formation of the Ka! rma! n
vortices and therefore in regime D they still roll up closer to the base. Finally the
incoherent streamwise vortices weaken the spanwise vortices as well and the wake
returns to regime L. This scenario implies that within each shedding cycle a perfect
synchronization between the spanwise and streamwise vortices does not exist. Some
imbalance or phase mismatch exists between their generation mechanisms, which
results in the low-frequency unsteadiness. It must be cautioned that the above scenario
is only a conjecture based on the detailed visualization at various stages during the
shedding process. Even at the present modest Reynolds number of 250 the wake
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dynamics is far too complicated to extract a precise dynamical model. Future
investigations under controlled conditions will hopefully shed light on the mechanistic
details.

7. Conclusions

The wake behind a zero-thickness flat plate held normal to the flow at Re¯ 250 is
observed to exhibit a low-frequency unsteadiness in addition to the primary shedding
frequency corresponding to the Ka! rma! n vortices. This mechanism is clearly evident in
the time history of instantaneous span-averaged drag and lift coefficients. Auto-
correlations of drag and lift coefficients reveal that the non-dimensional shedding (or
Strouhal) frequencies and low frequencies are 0.16 and 0.015 respectively. A time
history of single-point velocity measurement reveals the shedding frequency, but the
low-frequency unsteadiness is not apparent in the velocity signals. On the other hand,
autocorrelations of the velocity signal extract the low-frequency behaviour accurately.
Thus, the low-frequency unsteadiness is not just restricted to global measurements, it
is a complex phenomenon experienced by the entire flow field.

In the case of the drag coefficient, a low-frequency component is superposed on top
of oscillations at twice the shedding frequency. During the low-frequency cycle (or even
roughly ten shedding cycles) the flow gradually switches back and forth between
shedding cycles of high mean drag to shedding cycles of low mean drag. The high and
low mean drag states of the wake are referred to as regime H and regime L. Owing to
symmetry about the wake centreline, the mean lift within each shedding cycle remains
nearly zero and therefore a noticeable low-frequency component is not superposed on
the time series of the lift coefficient. Instead, the low frequency modulates the lift
variation at the shedding frequency. In other words, the peak-to-valley variation in lift
coefficient during a shedding cycle is at its highest value in regime H, and is very low
in regime L. This low-frequency amplitude modulation can also be observed in the drag
coefficient ; a large variation in drag coefficient over a shedding cycle occurs when the
mean drag is high, while the variation in drag coefficient over a shedding cycle is
virtually non-existent when the mean drag is low. Apart from the amplitude
modulation, the low-frequency unsteadiness modulates the shedding frequency as well.
The shedding frequency increases from regime L to regime H, i.e. with increasing mean
drag. Further, the variation in shedding frequency as flow goes from regime L to H
seems to differ from its variation as the flow evolves from regime H to L, thus showing
signs of hysteresis.

The spanwise Ka! rma! n vortices evolve differently in regimes H and L. In the high
drag regime, the spanwise vortices are compact and roll up close to the back side of the
normal plate. On the other hand, in regime L the spanwise vortices are less compact
and their formation region extends farther away from the normal plate. As a result, the
mean recirculation region in regime H is significantly shorter than that of regime L.
The associated mean base suction pressure is higher in regime H, thus explaining the
higher mean drag coefficient. The periodic generation of strong coherent spanwise
vortices in the immediate wake of the plate in regime H translates to large-amplitude
variation in drag and lift coefficients over the shedding cycle. In contrast, the less
coherent spanwise vortices of regime L forming farther downstream result in no
significant variation in drag and lift coefficients. The significantly different dynamics of
the spanwise vortices can also explain the observed frequency modulation.

Further, the three-dimensional structure of the wake is also significantly different
between regimes H and L. In the high-drag regime, reasonably well-organized
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streamwise vortices (or ribs) are seen to extend in the braid region connecting the
spanwise Ka! rma! n vortices. The spanwise vortices are significantly distorted along the
spanwise direction as a result of the strain field induced by the streamwise vortices. In
spite of their mutual interaction, the spanwise and streamwise vortices are observed to
be distinct and this state of three-dimensionality resembles the mode-B shedding
observed in circular and square cylinder wakes (Williamson 1996 and Robichaux et al.
1998). In the low-drag regime, the spanwise vortices are seen to tear apart and large
sections of spanwise vorticity enter the braid region and get tilted and stretched along
the streamwise direction to form streamwise vortices. In addition, few mode-B-type
streamwise vortices are observed. In general the three-dimensional structure of the
wake in regime L is highly incoherent and streamwise vorticity seems to be distributed
over a larger region. This state of three-dimensionality resembles the large-scale
dislocation addressed by Williamson (1992, 1996).

It appears that the low-frequency unsteadiness might be the result of a beat
phenomenon arising from the interaction between the characteristic shedding
frequencies in regimes H and L. It is also noted that for a three-dimensional wake to
establish a periodic state, a balanced interplay between the spanwise and streamwise
vortices is required. The streamwise vortices distort the spanwise vortices along the
spanwise direction and these distortions aid the formation of next generation
streamwise vortices (Mittal & Balachandar 1995c). Once this synchronized evolution
is established with a perfect balance between the spanwise and streamwise vortices, the
shedding cycle can continue for a long time without any low-frequency component. In
contrast to this scenario, based on detailed visualization of flow structures we
conjecture here that the formation of streamwise and spanwise vortices is not in perfect
synchronization and as a result of this imbalance (or phase mismatch) the wake
undergoes a low-frequency cycle. Further investigation is needed to verify this
conjecture.
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